Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(19): 11274-11293, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34614168

RESUMEN

In plants and some animal lineages, RNA silencing is an efficient and adaptable defense mechanism against viruses. To counter it, viruses encode suppressor proteins that interfere with RNA silencing. Phloem-restricted viruses are spreading at an alarming rate and cause substantial reduction of crop yield, but how they interact with their hosts at the molecular level is still insufficiently understood. Here, we investigate the antiviral response against phloem-restricted turnip yellows virus (TuYV) in the model plant Arabidopsis thaliana. Using a combination of genetics, deep sequencing, and mechanical vasculature enrichment, we show that the main axis of silencing active against TuYV involves 22-nt vsiRNA production by DCL2, and their preferential loading into AGO1. Moreover, we identify vascular secondary siRNA produced from plant transcripts and initiated by DCL2-processed AGO1-loaded vsiRNA. Unexpectedly, and despite the viral encoded VSR P0 previously shown to mediate degradation of AGO proteins, vascular AGO1 undergoes specific post-translational stabilization during TuYV infection. Collectively, our work uncovers the complexity of antiviral RNA silencing against phloem-restricted TuYV and prompts a re-assessment of the role of its suppressor of silencing P0 during genuine infection.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Argonautas/genética , Proteínas de Ciclo Celular/genética , Interacciones Huésped-Patógeno/genética , Luteoviridae/genética , Enfermedades de las Plantas/genética , Ribonucleasa III/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Arabidopsis/inmunología , Arabidopsis/virología , Proteínas de Arabidopsis/inmunología , Proteínas Argonautas/inmunología , Proteínas de Ciclo Celular/inmunología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica , Genes Supresores , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno/inmunología , Luteoviridae/crecimiento & desarrollo , Luteoviridae/metabolismo , Floema/genética , Floema/inmunología , Floema/virología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Interferencia de ARN , Ribonucleasa III/inmunología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Proteínas Virales/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(14): E2965-E2974, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28325872

RESUMEN

As photosynthetic organisms, plants need to prevent irreversible UV-induced DNA lesions. Through an unbiased, genome-wide approach, we have uncovered a previously unrecognized interplay between Global Genome Repair and small interfering RNAs (siRNAs) in the recognition of DNA photoproducts, prevalently in intergenic regions. Genetic and biochemical approaches indicate that, upon UV irradiation, the DNA DAMAGE-BINDING PROTEIN 2 (DDB2) and ARGONAUTE 1 (AGO1) of Arabidopsis thaliana form a chromatin-bound complex together with 21-nt siRNAs, which likely facilitates recognition of DNA damages in an RNA/DNA complementary strand-specific manner. The biogenesis of photoproduct-associated siRNAs involves the noncanonical, concerted action of RNA POLYMERASE IV, RNA-DEPENDENT RNA POLYMERASE-2, and DICER-LIKE-4. Furthermore, the chromatin association/dissociation of the DDB2-AGO1 complex is under the control of siRNA abundance and DNA damage signaling. These findings reveal unexpected nuclear functions for DCL4 and AGO1, and shed light on the interplay between small RNAs and DNA repair recognition factors at damaged sites.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Argonautas/metabolismo , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , ARN de Planta/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Mutación , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de la radiación , Plantas Modificadas Genéticamente , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Rayos Ultravioleta
3.
Plant J ; 95(2): 204-218, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29682831

RESUMEN

In the model plant Arabidopsis thaliana, four Dicer-like proteins (DCL1-4) mediate the production of various classes of small RNAs (sRNAs). Among these four proteins, DCL4 is by far the most versatile RNaseIII-like enzyme, and previously identified dcl4 missense alleles were shown to uncouple the production of the various classes of DCL4-dependent sRNAs. Yet little is known about the molecular mechanism behind this uncoupling. Here, by studying the subcellular localization, interactome and binding to the sRNA precursors of three distinct dcl4 missense alleles, we simultaneously highlight the absolute requirement of a specific residue in the helicase domain for the efficient production of all DCL4-dependent sRNAs, and identify, within the PAZ domain, an important determinant of DCL4 versatility that is mandatory for the efficient processing of intramolecular fold-back double-stranded RNA (dsRNA) precursors, but that is dispensable for the production of small interfering RNAs (siRNAs) from RDR-dependent dsRNA susbtrates. This study not only provides insights into the DCL4 mode of action, but also delineates interesting tools to further study the complexity of RNA silencing pathways in plants, and possibly other organisms.


Asunto(s)
Proteínas de Arabidopsis/genética , Mutación Missense , ARN Bicatenario/metabolismo , Ribonucleasa III/genética , Alelos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Mutación Missense/genética , ARN/metabolismo , Ribonucleasa III/metabolismo , Especificidad por Sustrato
4.
Nucleic Acids Res ; 45(6): 3460-3472, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-27899576

RESUMEN

In the expanding repertoire of small noncoding RNAs (ncRNAs), tRNA-derived RNA fragments (tRFs) have been identified in all domains of life. Their existence in plants has been already proven but no detailed analysis has been performed. Here, short tRFs of 19-26 nucleotides were retrieved from Arabidopsis thaliana small RNA libraries obtained from various tissues, plants submitted to abiotic stress or fractions immunoprecipitated with ARGONAUTE 1 (AGO1). Large differences in the tRF populations of each extract were observed. Depending on the tRNA, either tRF-5D (due to a cleavage in the D region) or tRF-3T (via a cleavage in the T region) were found and hot spots of tRNA cleavages have been identified. Interestingly, up to 25% of the tRFs originate from plastid tRNAs and we provide evidence that mitochondrial tRNAs can also be a source of tRFs. Very specific tRF-5D deriving not only from nucleus-encoded but also from plastid-encoded tRNAs are strongly enriched in AGO1 immunoprecipitates. We demonstrate that the organellar tRFs are not found within chloroplasts or mitochondria but rather accumulate outside the organelles. These observations suggest that some organellar tRFs could play regulatory functions within the plant cell and may be part of a signaling pathway.


Asunto(s)
Arabidopsis/genética , Núcleo Celular/metabolismo , ARN de Transferencia/metabolismo , ARN no Traducido/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Núcleo Celular/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plastidios/metabolismo , ARN/metabolismo , ARN del Cloroplasto/metabolismo , ARN Mitocondrial , ARN de Transferencia/química , ARN no Traducido/química , Estrés Fisiológico
5.
Nucleic Acids Res ; 45(3): 1330-1344, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28180322

RESUMEN

In plants, several dsRNA-binding proteins (DRBs) have been shown to play important roles in various RNA silencing pathways, mostly by promoting the efficiency and/or accuracy of Dicer-like proteins (DCL)-mediated small RNA production. Among the DRBs encoded by the Arabidopsis genome, we recently identified DRB7.2 whose function in RNA silencing was unknown. Here, we show that DRB7.2 is specifically involved in siRNA production from endogenous inverted-repeat (endoIR) loci. This function requires its interacting partner DRB4, the main cofactor of DCL4 and is achieved through specific sequestration of endoIR dsRNA precursors, thereby repressing their access and processing by the siRNA-generating DCLs. The present study also provides multiple lines of evidence showing that DRB4 is partitioned into, at least, two distinct cellular pools fulfilling different functions, through mutually exclusive binding with either DCL4 or DRB7.2. Collectively, these findings revealed that plants have evolved a specific DRB complex that modulates selectively the production of endoIR-siRNAs. The existence of such a complex and its implication regarding the still elusive biological function of plant endoIR-siRNA will be discussed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , ARN de Planta/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencias Invertidas Repetidas , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Plantas Modificadas Genéticamente , Interferencia de ARN , Precursores del ARN/genética , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Planta/genética , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Ribonucleasa III/química , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
6.
Plant J ; 92(6): 1132-1142, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29044717

RESUMEN

Intracellular sorting of mRNAs is an essential process for regulating gene expression and protein localization. Most mitochondrial proteins are nuclear-encoded and imported into the mitochondria through post-translational or co-translational processes. In the latter case, mRNAs are found to be enriched in the vicinity of mitochondria. A genome-scale analysis of mRNAs associated with mitochondria has been performed to determine plant cytosolic mRNAs targeted to the mitochondrial surface. Many messengers encoding mitochondrial proteins were found associated with mitochondria. These mRNAs correspond to particular functions and complexes, such as respiration or mitoribosomes, which indicates a coordinated control of mRNA localization within metabolic pathways. In addition, upstream AUGs in 5' untranslated regions (UTRs), which modulate the translation efficiency of downstream sequences, were found to negatively affect the association of mRNAs with mitochondria. A mutational approach coupled with in vivo mRNA visualization confirmed this observation. Moreover, this technique allowed the identification of 3'-UTRs as another essential element for mRNA localization at the mitochondrial surface. Therefore, this work offers new insights into the mechanism, function and regulation of the association of cytosolic mRNAs with plant mitochondria.


Asunto(s)
Proteínas Mitocondriales/metabolismo , ARN Mensajero/metabolismo , Solanum tuberosum/genética , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Mutación , Transporte de Proteínas , ARN Mensajero/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Ribosomas/metabolismo , Solanum tuberosum/metabolismo
8.
Methods Mol Biol ; 2426: 243-265, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36308692

RESUMEN

Immunoprecipitation mass spectrometry (IP-MS) is a popular method for the identification of protein-protein interactions. This approach is particularly powerful when information is collected without a priori knowledge and has been successively used as a first key step for the elucidation of many complex protein networks. IP-MS consists in the affinity purification of a protein of interest and of its interacting proteins followed by protein identification and quantification by mass spectrometry analysis. We developed an R package, named IPinquiry, dedicated to IP-MS analysis and based on the spectral count quantification method. The main purpose of this package is to provide a simple R pipeline with a limited number of processing steps to facilitate data exploration for biologists. This package allows to perform differential analysis of protein accumulation between two groups of IP experiments, to retrieve protein annotations, to export results, and to create different types of graphics. Here we describe the step-by-step procedure for an interactome analysis using IPinquiry from data loading to result export and plot production.


Asunto(s)
Visualización de Datos , Proteínas , Proteínas/análisis , Espectrometría de Masas/métodos , Inmunoprecipitación , Cromatografía de Afinidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA