Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
NMR Biomed ; 37(9): e5160, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38646677

RESUMEN

Neurofibrillary tangles of tau constitute one of the key biological hallmarks of Alzheimer's disease. Currently, the assessment of regional tau accumulation requires intravenous administration of radioactive tracers for PET imaging. A noninvasive MRI-based solution would have significant clinical implications. Herein, we utilized an MRI technique known as chemical exchange saturation transfer (CEST) to determine the imaging signature of tau in both its monomeric and pathologic fibrillated conformations. Three sets of purified recombinant full-length (4R) tau protein were prepared for collection of CEST spectra using a 9.4 T NMR spectrometer at varying temperatures (25, 37, and 42 °C) and RF intensities (0.7, 1.0, 1.5, and 2.2 µT). Monomeric and fibrillated tau were readily distinguished based on their Z-spectrum profiles. Fibrillated tau demonstrated a less prominent peak at 3.5 ppm with additional peaks near 0.5 and 1.5 ppm. No significant differences were identified between fibrillated tau prepared using heparin versus seed-competent tau. In conclusion, monomeric and fibrillated tau can be readily detected and distinguished based on their CEST-derived Z-spectra, pointing to the potential utility of CEST-MRI as a noninvasive biomarker of regional pathologic tau accumulation in the brain. Further testing and validation in vitro and in vivo will be necessary before this can be applied clinically.


Asunto(s)
Imagen por Resonancia Magnética , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/química , Humanos
2.
NMR Biomed ; 36(6): e4906, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36640112

RESUMEN

Chemical exchange saturation transfer (CEST) MRI has gained recognition as a valuable addition to the molecular imaging and quantitative biomarker arsenal, especially for characterization of brain tumors. There is also increasing interest in the use of CEST-MRI for applications beyond the brain. However, its translation to body oncology applications lags behind those in neuro-oncology. The slower migration of CEST-MRI to non-neurologic applications reflects the technical challenges inherent to imaging of the torso. In this review, we discuss the application of CEST-MRI to oncologic conditions of the breast and torso (i.e., body imaging), emphasizing the challenges and potential solutions to address them. While data are still limited, reported studies suggest that CEST signal is associated with important histology markers such as tumor grade, receptor status, and proliferation index, some of which are often associated with prognosis and response to therapy. However, further technical development is still needed to make CEST a reliable clinical application for body imaging and establish its role as a predictive and prognostic biomarker.


Asunto(s)
Neoplasias Encefálicas , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/patología , Encéfalo/patología , Pronóstico , Imagen Molecular
3.
NMR Biomed ; 36(6): e4808, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35916067

RESUMEN

Off-resonance radio frequency irradiation can induce the ordering of proton spins in the dipolar fields of their neighbors, in molecules with restricted mobility. This dipolar order decays with a characteristic relaxation time, T1D , that is very different from the T1 and T2 relaxation of the nuclear alignment with the main magnetic field. Inhomogeneous magnetization transfer (ihMT) imaging is a refinement of magnetization transfer (MT) imaging that isolates the MT signal dependence on dipolar order relaxation times within motion-constrained molecules. Because T1D relaxation is a unique contrast mechanism, ihMT may enable improved characterization of tissue. Initial work has stressed the high correlation between ihMT signal and myelin density. Dipolar order relaxation appears to be much longer in membrane lipids than other molecules. Recent work has shown, however, that ihMT acquisitions may also be adjusted to emphasize different ranges of T1D . These newer approaches may be sensitive to other microstructural components of tissue. Here, we review the concepts and history of ihMT and outline the requirements for further development to realize its full potential.


Asunto(s)
Imagen por Resonancia Magnética , Vaina de Mielina , Imagen por Resonancia Magnética/métodos , Vaina de Mielina/química , Lípidos de la Membrana , Campos Magnéticos , Movimiento (Física)
4.
Magn Reson Med ; 87(2): 872-883, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34520077

RESUMEN

PURPOSE: Current challenges of in vivo CEST imaging include overlapping signals from different pools. The overlap arises from closely resonating pools and/or the broad magnetization transfer contrast (MTC) from macromolecules. This study aimed to evaluate the feasibility of variable delay multipulse (VDMP) CEST to separately assess solute pools with different chemical exchange rates in the human brain in vivo, while mitigating the MTC. METHODS: VDMP saturation buildup curves were simulated for amines, amides, and relayed nuclear Overhauser effect. VDMP data were acquired from glutamate and bovine serum albumin phantoms, and from six healthy volunteers at 7T. For the in vivo data, MTC removal was performed via a three-pool Lorentzian fitting. Different B1 amplitudes and mixing times were used to evaluate CEST pools with different exchange rates. RESULTS: The results show the importance of removing MTC when applying VDMP in vivo and the influence of B1 for distinguishing different pools. Finally, the optimal B1 and mixing times to effectively saturate slow- and fast-exchanging components are also reported. Slow-exchanging amides and rNOE components could be distinguished when using B1 = 1 µT and tmix = 10 ms and 40 ms, respectively. Fast-exchanging components reached the highest saturation when using a B1 = 2.8 µT and tmix = 0 ms. CONCLUSION: VDMP is a powerful CEST-editing tool, exploiting chemical exchange-rate differences. After MTC removal, it allows separate assessment of slow- and fast-exchanging solute pools in in vivo human brain.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Amidas , Aminas , Encéfalo/diagnóstico por imagen , Humanos , Fantasmas de Imagen
5.
Magn Reson Med ; 85(4): 2136-2144, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33107146

RESUMEN

PURPOSE: The recently introduced inhomogeneous magnetization transfer (ihMT) method has predominantly been applied for imaging the central nervous system. Future applications of ihMT, such as in peripheral nerves and muscles, will involve imaging in the vicinity of adipose tissues. This work aims to systematically investigate the partial volume effect of fat on the ihMT signal and to propose an efficient fat-separation method that does not interfere with ihMT measurements. METHODS: First, the influence of fat on ihMT signal was studied using simulations. Next, the ihMT sequence was combined with a multi-echo Dixon acquisition for fat separation. The sequence was tested in 9 healthy volunteers using a 3T human scanner. The ihMT ratio (ihMTR) values were calculated in regions of interest in the brain and the spinal cord using standard acquisition (no fat saturation), water-only, in-phase, and out-of-phase reconstructions. The values obtained were compared with a standard fat suppression method, spectral presaturation with inversion recovery. RESULTS: Simulations showed variations in the ihMTR values in the presence of fat, depending on the TEs used. The IhMTR values in the brain and spinal cord derived from the water-only ihMT multi-echo Dixon images were in good agreement with values from the unsuppressed sequence. The ihMT-spectral presaturation with inversion recovery combination resulted in 24%-35% lower ihMTR values compared with the standard non-fat-suppressed acquisition. CONCLUSION: The presence of fat within a voxel affects the ihMTR calculations. The IhMT multi-echo Dixon method does not compromise the observable ihMT effect and can potentially be used to remove fat influence in ihMT.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Tejido Adiposo/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Voluntarios Sanos , Humanos , Médula Espinal
6.
Magn Reson Med ; 81(1): 504-513, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30146714

RESUMEN

PURPOSE: Chemical exchange saturation transfer is a novel and promising MRI contrast method, but it can be time-consuming. Common parallel imaging methods, like SENSE, can lead to reduced quality of CEST. Here, parallel blind compressed sensing (PBCS), combining blind compressed sensing (BCS) and parallel imaging, is evaluated for the acceleration of CEST in brain and breast. METHODS: The CEST data were collected in phantoms, brain (N = 3), and breast (N = 2). Retrospective Cartesian undersampling was implemented and the reconstruction results of PBCS-CEST were compared with BCS-CEST and k-t sparse-SENSE CEST. The normalized RMSE and the high-frequency error norm were used for quantitative comparison. RESULTS: In phantom and in vivo brain experiments, the acceleration factor of R = 10 (24 k-space lines) was achieved and in breast R = 5 (30 k-space lines), without compromising the quality of the PBCS-reconstructed magnetization transfer rate asymmetry maps and Z-spectra. Parallel BCS provides better reconstruction quality when compared with BCS, k-t sparse-SENSE, and SENSE methods using the same number of samples. Parallel BCS overperforms BCS, indicating that the inclusion of coil sensitivity improves the reconstruction of the CEST data. CONCLUSION: The PBCS method accelerates CEST without compromising its quality. Compressed sensing in combination with parallel imaging can provide a valuable alternative to parallel imaging alone for accelerating CEST experiments.


Asunto(s)
Encéfalo/diagnóstico por imagen , Mama/diagnóstico por imagen , Compresión de Datos/métodos , Imagen por Resonancia Magnética , Algoritmos , Medios de Contraste/química , Femenino , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador , Masculino , Distribución Normal , Fantasmas de Imagen , Reproducibilidad de los Resultados
7.
Magn Reson Med ; 79(5): 2731-2737, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28862349

RESUMEN

PURPOSE: Chemical exchange saturation transfer (CEST) MRI is increasingly evolving from brain to body applications. One of the known problems in the body imaging is the presence of strong lipid signals. Although their influence on the CEST effect is acknowledged, there was no study that focuses on the interplay among echo time, fat fraction, and Z-spectrum. This study strives to address these points, with the emphasis on the application in the breast. METHODS: Z-spectra were simulated in phase and out of phase of the main fat peak at -3.4 ppm, with the fat fraction varying from 0 to 100%. The magnetization transfer ratio asymmetry in two ranges, centering at the exchanging pool and at 3.5 ppm approximately opposite the nonexchanging fat pool, were calculated and were plotted against fat fraction. The results were verified in phantoms and in vivo. RESULTS: The results demonstrate the combined influence of fat fraction and echo time on the Z-spectrum for gradient echo based CEST acquisitions. The influence is straightforward in the in-phase images, but it is more complicated in the out-of-phase images, potentially leading to erroneous CEST contrast. CONCLUSIONS: This study provides a basis for understanding the origin and appearance of lipid artifacts in CEST imaging, and lays the foundation for their efficient removal. Magn Reson Med 79:2731-2737, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Mama/diagnóstico por imagen , Femenino , Humanos , Lípidos/química , Fantasmas de Imagen
8.
Magn Reson Med ; 80(6): 2402-2414, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29707813

RESUMEN

PURPOSE: To compare the recently introduced inhomogeneous magnetization transfer (ihMT) technique with more established MRI techniques including myelin water imaging (MWI) and diffusion tensor imaging (DTI), and to evaluate the microstructural attributes correlating with this new contrast method in the human brain white matter. METHODS: Eight adult healthy volunteers underwent T1 -weighted, ihMT, MWI, and DTI imaging on a 3T human scanner. The ihMT ratio (ihMTR), myelin water fraction (MWF), fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), and mean diffusivity (MD) values were calculated from different white matter tracts. The angle ( θ ) between the directions of the principal eigenvector, as measured by DTI, and the main magnetic field was calculated for all voxels from various fiber tracts. The ihMTR was correlated with MWF and DTI metrics. RESULTS: A strong correlation was found between ihMTR and MWF (ρ = 0.77, P < 0.0001). This was followed by moderate to weak correlations between ihMTR and DTI metrics: RD (ρ = -0.30, P < 0.0001), FA (ρ = 0.20, P < 0.0001), MD (ρ = -0.19, P < 0.0001), AD (ρ = 0.02, P < 0.0001). A strong correlation was found between ihMTR and θ (ρ = -0.541, P < 0.0001). CONCLUSION: The strong correlation with myelin water imaging and its low coefficient of variation suggest that ihMT has the potential to become a new structural imaging marker of myelin. The substantial orientational dependence of ihMT should be taken into account when evaluating and quantitatively interpreting ihMT results.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Imagenología Tridimensional/métodos , Vaina de Mielina/química , Sustancia Blanca/diagnóstico por imagen , Adulto , Anisotropía , Mapeo Encefálico/métodos , Simulación por Computador , Imagen de Difusión Tensora , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Magnetismo , Masculino , Reconocimiento de Normas Patrones Automatizadas , Programas Informáticos , Agua , Adulto Joven
10.
Magn Reson Med ; 75(5): 1875-85, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26033357

RESUMEN

PURPOSE: Chemical exchange saturation transfer (CEST) is a contrast mechanism enhancing low-concentration molecules through saturation transfer from their exchangeable protons to bulk water. Often many scans are acquired to form a Z-spectrum, making the CEST method time-consuming. Here, an ultrafast localized CEST-spectroscopy with PRESS (UCEPR) is proposed to obtain the entire Z-spectrum of a voxel using only two scans, significantly accelerating CEST. THEORY AND METHODS: The approach combines ultrafast nonlocalized CEST spectroscopy with localization using PRESS. A field gradient is applied concurrently with the saturation pulse producing simultaneous saturation of all Z-spectrum frequencies that are also spatially encoded. A readout gradient during data acquisition resolves the spatial dependence of the CEST responses into frequency. UCEPR was tested on a 3T scanner both in phantoms and in vivo. RESULTS: In phantoms, a fast Z-spectroscopy acquisition of multiple pH-variant iopamidol samples was achieved with four- to seven-fold acceleration as compared to the conventional CEST methods. In vivo, amide proton transfer (APT) in white matter of healthy human brain was measured rapidly in 48 s and with high frequency resolution (≤ 0.2 ppm). CONCLUSION: Compared with conventional CEST methods, UCEPR has the advantage of rapidly acquiring high-resolution Z-spectra. Potential in vivo applications include ultrafast localized Z-spectroscopy, quantitative, or dynamic CEST studies.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Espectrofotometría/métodos , Encéfalo/fisiología , Medios de Contraste/química , Voluntarios Sanos , Humanos , Concentración de Iones de Hidrógeno , Yopamidol/química , Protones , Ondas de Radio , Agua/química
11.
Magn Reson Med ; 75(6): 2432-41, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26173637

RESUMEN

PURPOSE: This study explored the feasibility of using a pH responsive paramagnetic chemical exchange saturation transfer (paraCEST) agent to image the pH gradient in kidneys of healthy mice. METHODS: CEST signals were acquired on an Agilent 9.4 Tesla small animal MRI system using a steady-state gradient echo pulse sequence after a bolus injection of agent. The magnetic field inhomogeneity across each kidney was corrected using the WASSR method and pH maps were calculated by measuring the frequency of water exchange signal arising from the agent. RESULTS: Dynamic CEST studies demonstrated that the agent was readily detectable in kidneys only between 4 to 12 min postinjection. The CEST images showed a higher signal intensity in the pelvis and calyx regions and lower signal intensity in the medulla and cortex regions. The pH maps reflected tissue pH values spanning from 6.0 to 7.5 in kidneys of healthy mice. CONCLUSION: This study demonstrated that pH maps of the kidney can be imaged in vivo by measuring the pH-dependent chemical shift of a single water exchange CEST peak without prior knowledge of the agent concentration in vivo. The results demonstrate the potential of using a simple frequency-dependent paraCEST agent for mapping tissue pH in vivo. Magn Reson Med 75:2432-2441, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Algoritmos , Animales , Medios de Contraste/química , Concentración de Iones de Hidrógeno , Riñón/fisiología , Ratones , Ratones SCID
12.
Magn Reson Med ; 76(4): 1102-15, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26507361

RESUMEN

PURPOSE: In balanced steady state free precession (bSSFP), the signal intensity has a well-known dependence on the off-resonance frequency, or, equivalently, the phase advance between successive radiofrequency (RF) pulses. The signal profile can be used to resolve the contributions from the spectrally separated metabolites. This work describes a method based on use of a variable RF phase advance to acquire spatial and spectral data in a time-efficient manner for hyperpolarized 13C MRI. THEORY AND METHODS: The technique relies on the frequency response from a bSSFP acquisition to acquire relatively rapid, high-resolution images that may be reconstructed to separate contributions from different metabolites. The ability to produce images from spectrally separated metabolites was demonstrated in vitro, as well as in vivo following administration of hyperpolarized 1-13C pyruvate in mice with xenograft tumors. RESULTS: In vivo images of pyruvate, alanine, pyruvate hydrate, and lactate were reconstructed from four images acquired in 2 s with an in-plane resolution of 1.25 × 1.25 mm(2) and 5 mm slice thickness. CONCLUSION: The phase advance method allowed acquisition of spectroscopically selective images with high spatial and temporal resolution. This method provides an alternative approach to hyperpolarized 13C spectroscopic MRI that can be combined with other techniques such as multiecho or fluctuating equilibrium bSSFP. Magn Reson Med 76:1102-1115, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Alanina/metabolismo , Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Ácido Láctico/metabolismo , Imagen por Resonancia Magnética/métodos , Neoplasias Experimentales/metabolismo , Ácido Pirúvico/metabolismo , Procesamiento de Señales Asistido por Computador , Células A549 , Algoritmos , Animales , Biomarcadores de Tumor/metabolismo , Isótopos de Carbono/farmacocinética , Línea Celular Tumoral , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Ratones , Ratones Desnudos , Imagen Molecular/métodos , Neoplasias Experimentales/patología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
Magn Reson Med ; 66(5): 1275-85, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21608029

RESUMEN

Amide proton transfer (APT) imaging has shown promise as an indicator of tissue pH and as a marker for brain tumors. Sources of error in APT measurements include direct water saturation, and magnetization transfer (MT) from membranes and macromolecules. These are typically suppressed by postprocessing asymmetry analysis. However, this approach is strongly dependent on B(0) homogeneity and can introduce additional errors due to intrinsic MT asymmetry, aliphatic proton features opposite the amide peak and radiation damping-induced asymmetry. Although several methods exist to correct for B(0) inhomogeneity, they tremendously increase scan times and do not address errors induced by asymmetry of the z-spectrum. In this article, a novel saturation scheme-saturation with frequency alternating RF irradiation (SAFARI)-is proposed in combination with a new magnetization transfer ratio (MTR) parameter designed to generate APT images insensitive to direct water saturation and MT, even in the presence of B(0) inhomogeneity. The feasibility of the SAFARI technique is demonstrated in phantoms and in the human brain. Experimental results show that SAFARI successfully removes direct water saturation and MT contamination from APT images. It is insensitive to B(0) offsets up to 180 Hz without using additional B(0) correction, thereby dramatically reducing scanning time.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Amidas , Encéfalo/anatomía & histología , Humanos , Concentración de Iones de Hidrógeno , Fantasmas de Imagen , Protones
15.
Magn Reson Med ; 66(3): 746-55, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21432901

RESUMEN

Contrast agents that can diffuse freely into or within tissue have numerous attractive features for perfusion imaging. Here we present preliminary data illustrating the suitability of hyperpolarized (13)C labeled 2-methylpropan-2-ol (also known as dimethylethanol, tertiary butyl alcohol and tert-butanol) as a freely diffusible contrast agent for magnetic resonance perfusion imaging. Dynamic (13)C images acquired in rat brain with a balanced steady-state free precession sequence following administration of hyperpolarized 2-methylpropan-2-ol show that this agent can be imaged with 2-4 s temporal resolution, 2 mm slice thickness, and 700 µm in-plane resolution while retaining adequate signal-to-noise ratio. (13)C relaxation measurements on 2-methylpropan-2-ol in blood at 9.4 T yield T(1) = 46 ± 4s and T(2) = 0.55 ± 0.03 s. In the rat brain at 4.7 T, analysis of the temporal dynamics of the balanced steady-state free precession image intensity in tissue and venous blood indicate that 2-methylpropan-2-ol has a T(2) of roughly 2-4s and a T(1) of 43 ± 24 s. In addition, the images indicate that 2-methylpropan-2-ol is freely diffusible in brain and hence has a long residence time in tissue; this in turn makes it possible to image the agent continuously for tens of seconds. These characteristics show that 2-methylpropan-2-ol is a promising agent for robust and quantitative perfusion imaging in the brain and body.


Asunto(s)
Mapeo Encefálico/métodos , Medios de Contraste/farmacocinética , Imagen por Resonancia Magnética/métodos , Alcohol terc-Butílico/farmacocinética , Animales , Isótopos de Carbono , Circulación Cerebrovascular , Gadolinio , Compuestos Heterocíclicos/farmacocinética , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Compuestos Organometálicos/farmacocinética , Ratas , Ratas Wistar , Relación Señal-Ruido
16.
Magn Reson Med ; 63(3): 625-32, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20187174

RESUMEN

The efficiency of chemical exchange dependent saturation transfer (CEST) agents is largely determined by their water or proton exchange kinetics, yet methods to measure such exchange rates are variable and many are not applicable to in vivo measurements. In this work, the water exchange kinetics of two prototype paramagnetic agents (PARACEST) are compared by using data from classic NMR line-width measurements, by fitting CEST spectra to the Bloch equations modified for chemical exchange, and by a method where CEST intensity is measured as a function of applied amplitude of radiofrequency field. A relationship is derived that provides the water exchange rate from the X-intercept of a plot of steady-state CEST intensity divided by reduction in signal caused by CEST irradiation versus 1/omega(1)(2), referred to here as an omega plot. Furthermore, it is shown that this relationship is independent of agent concentration. Exchange rates derived from omega plots using either high-resolution CEST NMR data or CEST data obtained by imaging agree favorably with exchange rates measured by the more commonly used Bloch fitting and line-width methods. Thus, this new method potentially allows access to a direct measure of exchange rates in vivo, where the agent concentration is typically unknown.


Asunto(s)
Algoritmos , Medios de Contraste/administración & dosificación , Medios de Contraste/química , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Modelos Químicos , Simulación por Computador , Relación Dosis-Respuesta a Droga , Cinética
17.
Acta Radiol ; 51(8): 910-23, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20828299

RESUMEN

In this review we describe the status of development for a new class of magnetic resonance (MR) contrast agents, based on chemical exchange saturation transfer (CEST). The mathematics and physics relevant to the description of the CEST effect in MR are presented in an appendix published in the online version only. We discuss the issues arising when translating in vitro results obtained with CEST agents to using these MR agents in in vivo model studies and in humans. Examples are given on how these agents are imaged in vivo. We summarize the status of development of these CEST agents, and speculate about the next steps that may be taken towards the demonstration of CEST MR imaging in clinical applications.


Asunto(s)
Medios de Contraste/química , Imagen por Resonancia Magnética/métodos , Humanos , Elementos de la Serie de los Lantanoides/química , Magnetismo
18.
J Magn Reson ; 306: 145-149, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31337563

RESUMEN

Molecular imaging using MRI is gaining momentum. While sensitivity of MR is limited compared to other molecular imaging modalities, the molecular specificity is high in comparison. Moreover, MRI offers contrast based on multitude of processes and scales, from intramolecular relaxation pathways to water diffusion. Living tissue offers abundance of potential molecular targets of interest in biology and medicine. In this short perspective we focus on some direct and indirect methods to visualize endogenous molecules. We briefly discuss Spectroscopic Imaging (MRSI), Chemical Exchange Saturation Transfer (CEST) and Magnetization Transfer Contrast (MTC). Imaging molecules with MRI is part of the larger universe of imaging methods. Moreover, it is part of ever increasing pool of data combining imaging with other modalities, biology and patient outcomes.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Imagen Molecular/tendencias , Algoritmos , Animales , Humanos , Espectroscopía de Resonancia Magnética , Imagen Molecular/métodos
19.
J Magn Reson ; 188(1): 176-82, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17600743

RESUMEN

Recent work has shown that singlet states of two-spin systems in low magnetic fields can have lifetimes up to an order of magnitude longer than the usual spin-lattice relaxation time. This result may enable new applications of NMR, and in particular hyperpolarized NMR via parahydrogen-induced polarization, to the study of slow processes that take place over previously inaccessible timescales. At present it is unclear whether similar results apply to multi-spin systems, or if these long lifetimes are a peculiarity of the two-spin case. Moderately long-lived states have been observed in systems containing more than two spins, although the mechanisms that prolong their lifetimes are not well understood. Here we present formalism for the study of relaxation in multi-spin systems in low magnetic fields. This approach is used to derive a family of quantum-mechanical selection rules governing intramolecular dipolar relaxation at low field that may account for the extended lifetimes observed in multi-spin systems.


Asunto(s)
Algoritmos , Espectroscopía de Resonancia Magnética/métodos , Modelos Teóricos
20.
J Magn Reson ; 275: 55-67, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28012297

RESUMEN

Chemical exchange saturation transfer (CEST) is a novel contrast mechanism and it is gaining increasing popularity as many promising applications have been proposed and investigated. Fast and quantitative CEST imaging techniques are further needed in order to increase the applicability of CEST for clinical use as well as to derive quantitative physiological and biological information. Steady-state methods for fast CEST imaging have been reported recently. Here, we observe that an extreme case of these methods is a balanced steady-state free precession (bSSFP) sequence. The bSSFP in itself is sensitive to the exchange processes; hence, no additional saturation or preparation is needed for CEST-like data acquisition. The bSSFP experiment can be regarded as observation during saturation, without separate saturation and acquisition modules as used in standard CEST and similar experiments. One of the differences from standard CEST methods is that the bSSFP spectrum is an XY-spectrum not a Z-spectrum. As the first proof-of-principle step, we have implemented the steady-state bSSFP sequence for chemical exchange detection (bSSFPX) and verified its feasibility in phantom studies. These studies have shown that bSSFPX can achieve exchange-mediated contrast comparable to the standard CEST experiment. Therefore, the bSSFPX method has a potential for fast and quantitative CEST data acquisition.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Simulación por Computador , Fantasmas de Imagen , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA