Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Org Biomol Chem ; 16(16): 2966-2974, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29623337

RESUMEN

An efficient method for the CF3-carbenoid C-H functionalization of 6-arylpurines has been developed. This protocol uses readily available methyl 3,3,3-trifluoro-2-diazopropionate as a cross-coupling partner and proceeds smoothly under chelation-controlled Rh(iii) catalysis. The reactions provide the corresponding carbene insertion products with high regioselectivity within a few hours and allow the introduction of both the CF3 and carboxylate functions into biologically important purine molecules including nucleoside derivatives.

2.
Molecules ; 21(11)2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-27879680

RESUMEN

Cobalt pi-complexes, previously described in the literature and specially synthesized and characterized in this work, were used as catalysts in homogeneous oxidation of organic compounds with peroxides. These complexes contain pi-butadienyl and pi-cyclopentadienyl ligands: [(tetramethylcyclobutadiene)(benzene)cobalt] hexafluorophosphate, [(C4Me4)Co(C6H6)]PF6 (1); diiodo(carbonyl)(pentamethylcyclopentadienyl)cobalt, Cp*Co(CO)I2 (2); diiodo(carbonyl)(cyclopentadienyl)cobalt, CpCo(CO)I2 (3); (tetramethylcyclobutadiene)(dicarbonyl)(iodo)cobalt, (C4Me4)Co(CO)2I (4); [(tetramethylcyclobutadiene)(acetonitrile)(2,2'-bipyridyl)cobalt] hexafluorophosphate, [(C4Me4)Co(bipy)(MeCN)]PF6 (5); bis[dicarbonyl(B-cyclohexylborole)]cobalt, [(C4H4BCy)Co(CO)2]2 (6); [(pentamethylcyclopentadienyl)(iodo)(1,10-phenanthroline)cobalt] hexafluorophosphate, [Cp*Co(phen)I]PF6 (7); diiodo(cyclopentadienyl)cobalt, [CpCoI2]2 (8); [(cyclopentadienyl)(iodo)(2,2'-bipyridyl)cobalt] hexafluorophosphate, [CpCo(bipy)I]PF6 (9); and [(pentamethylcyclopentadienyl)(iodo)(2,2'-bipyridyl)cobalt] hexafluorophosphate, [Cp*Co(bipy)I]PF6 (10). Complexes 1 and 2 catalyze very efficient and stereoselective oxygenation of tertiary C-H bonds in isomeric dimethylcyclohexanes with MCBA: cyclohexanols are produced in 39 and 53% yields and with the trans/cis ratio (of isomers with mutual trans- or cis-configuration of two methyl groups) 0.05 and 0.06, respectively. Addition of nitric acid as co-catalyst dramatically enhances both the yield of oxygenates and stereoselectivity parameter. In contrast to compounds 1 and 2, complexes 9 and 10 turned out to be very poor catalysts (the yields of oxygenates in the reaction with cis-1,2-dimethylcyclohexane were only 5%-7% and trans/cis ratio 0.8 indicated that the oxidation is not stereoselective). The chromatograms of the reaction mixture obtained before and after reduction with PPh3 are very similar, which testifies that alkyl hydroperoxides are not formed in this oxidation. It can be thus concluded that the interaction of the alkanes with MCPBA occurs without the formation of free radicals. The complexes catalyze oxidation of alcohols with tert-butylhydroperoxide (TBHP). For example, tert-BuOOH efficiently oxidizes 1-phenylethanol to acetophenone in 98% yield if compound 1 is used as a catalyst.


Asunto(s)
Alcanos/química , Clorobenzoatos/química , Cobalto/química , Compuestos Organometálicos/química , Catálisis , Estructura Molecular , Oxidación-Reducción , Estereoisomerismo
3.
Dalton Trans ; 50(1): 287-293, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33300519

RESUMEN

Thirteen new metallacarborane complexes of rhodium and iridium with covalently bound cage carbon atoms were synthesized and their thermal stability was investigated. Two iridium complexes undergo a polyhedral rearrangement with the formation of more than one isomer. The structures of the new isomers were determined by a single crystal X-ray diffraction analysis and 11B{1H}-11B{1H} COSY NMR. A full isomerization scheme of the less thermally stable complex was proposed based on DFT calculations. According to this mechanism sequential downhill and uphill bifurcations arise in the reaction pathway. Each bifurcation is responsible for a new product formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA