RESUMEN
India is one of the largest emitters of atmospheric anthropogenic mercury (Hg) and the third-largest emitter of greenhouse gases in the world. In the past decade, India has been committed to the Minamata Convention (2017) in addition to the Paris Climate Change Agreement (2015) and the Glasgow Pact (2021). More than 70% to 80% of India's mercury and carbon dioxide emissions occur because of anthropogenic activities from coal usage. This study explores nine policy scenarios, the nationally determined contribution (NDC) scenario, and two deep decarbonization pathways (DDP) with and without mercury control technologies in the energy and carbon-intensive sectors using a bottom-up, techno-economic model, AIM/Enduse India. It is estimated that NDC scenarios reduce mercury emissions by 4%-10% by 2070; while coal intensive (DDP-CCS) pathways and focus on renewables (DDP-R) reduce emissions by 10%-54% and 15%-59%, respectively. Increase in the renewables share (power sector) can result in a significant reduction in the costs of additional pollution-abating technologies in the DDP-R scenario when compared with the coal intensive DDP-CCS scenario. However, the industry sector, especially iron and steel and metal production, will require stringent policies to encourage installation of pollution-abating technologies to mitigate mercury emissions under all the scenarios.
Asunto(s)
Contaminantes Atmosféricos , Mercurio , Contaminantes Atmosféricos/análisis , Mercurio/análisis , Contaminación Ambiental , India , Carbón Mineral/análisisRESUMEN
Many countries have implemented national climate policies to accomplish pledged Nationally Determined Contributions and to contribute to the temperature objectives of the Paris Agreement on climate change. In 2023, the global stocktake will assess the combined effort of countries. Here, based on a public policy database and a multi-model scenario analysis, we show that implementation of current policies leaves a median emission gap of 22.4 to 28.2 GtCO2eq by 2030 with the optimal pathways to implement the well below 2 °C and 1.5 °C Paris goals. If Nationally Determined Contributions would be fully implemented, this gap would be reduced by a third. Interestingly, the countries evaluated were found to not achieve their pledged contributions with implemented policies (implementation gap), or to have an ambition gap with optimal pathways towards well below 2 °C. This shows that all countries would need to accelerate the implementation of policies for renewable technologies, while efficiency improvements are especially important in emerging countries and fossil-fuel-dependent countries.