Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Environ Sci Technol (Tehran) ; 20(2): 2229-2246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36438928

RESUMEN

Microplastics (MPs) and SARS-CoV-2 interact due to their widespread presence in our environment and affect the virus' behaviour indoors and outdoors. Therefore, it is necessary to study the interaction between MPs and SARS-CoV-2. The environmental damage caused by MPs is increasing globally. Emerging pollutants may adversely affect organisms, especially sewage, posing a threat to human health, animal health, and the ecological system. A significant concern with MPs in the air is that they are a vital component of MPs in the other environmental compartments, such as water and soil, which may affect human health through ingesting or inhaling. This work introduces the fundamental knowledge of various methods in advanced water treatment, including membrane bioreactors, advanced oxidation processes, adsorption, etc., are highly effective in removing MPs; they can still serve as an entrance route due to their constantly being discharged into aquatic environments. Following that, an analysis of each process for MPs' removal and mitigation or prevention of SARS-CoV-2 contamination is discussed. Next, an airborne microplastic has been reported in urban areas, raising health concerns since aerosols are considered a possible route of SARS-CoV-2 disease transmission and bind to airborne MP surfaces. The MPs can be removed from wastewater through conventional treatment processes with physical processes such as screening, grit chambers, and pre-sedimentation.

2.
J Contam Hydrol ; 136-137: 10-24, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22659096

RESUMEN

This intermediate scale laboratory experimental study was designed to improve the conceptual understanding of aquifer flushing time associated with diffuse saltwater contamination of coastal aquifers due to a tsunami-like event. The motivation comes from field observations made after the tsunami in December, 2004 in South Asia. The focus is on the role and effects of heterogeneity on flushing effectiveness. A scheme that combines experimentation in a 4.8m long laboratory tank and numerical modeling was used. To demonstrate the effects of geologic heterogeneity, plume migration and flushing times were analyzed in both homogeneous and layered media and under different boundary conditions (ambient flow, saltwater infiltration rate, freshwater recharge). Saltwater and freshwater infiltrations imitate the results of the groundwater salinization from the tsunami and freshening from the monsoon rainfall. The saltwater plume behavior was monitored both through visual observations (digital photography) of the dyed salt water and using measurements taken from several electrical conductivity sensors installed through the tank walls. The variable-density, three dimensional code HST3D was used to simulate the tank experiments and understand the fate and movement of the saltwater plume under field conditions. The results from the tank experiments and modeling demonstrated that macro-scale heterogeneity significantly influenced the migration patterns and flushing times of diffuse saltwater contamination. Ambient flow had a direct influence on total flush-out time, and heterogeneity impacted flush-out times for the top part of the tank and total flush-out times. The presence of a continuous low-permeability layer caused a 40% increase in complete flush-out time due to the slower flow of salt water in the low-permeability layer. When a relatively small opening was introduced in the low-permeability layer, salt water migrated quickly into a higher-permeable layer below causing a reduction in flush-out time. Freshwater recharge caused an early dilution of salt water in the top part of the tank in the case of a layered media, but also pushed the saltwater plume into the low-permeability layer which led to increased total flush-out times.


Asunto(s)
Agua Subterránea/química , Tsunamis , Movimientos del Agua , Asia , Fenómenos Geológicos , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA