Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
N Engl J Med ; 372(26): 2481-98, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26061751

RESUMEN

BACKGROUND: Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. METHODS: We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. RESULTS: Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. CONCLUSIONS: The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most lower-grade gliomas without an IDH mutation were molecularly and clinically similar to glioblastoma. (Funded by the National Institutes of Health.).


Asunto(s)
ADN de Neoplasias/análisis , Genes p53 , Glioma/genética , Mutación , Adolescente , Adulto , Anciano , Cromosomas Humanos Par 1 , Cromosomas Humanos Par 19 , Análisis por Conglomerados , Femenino , Glioblastoma/genética , Glioma/metabolismo , Glioma/mortalidad , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Modelos de Riesgos Proporcionales , Análisis de Secuencia de ADN , Transducción de Señal
2.
Nat Commun ; 9(1): 1057, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29535300

RESUMEN

Mutational inactivation of the SWI/SNF chromatin regulator ATRX occurs frequently in gliomas, the most common primary brain tumors. Whether and how ATRX deficiency promotes oncogenesis by epigenomic dysregulation remains unclear, despite its recent implication in both genomic instability and telomere dysfunction. Here we report that Atrx loss recapitulates characteristic disease phenotypes and molecular features in putative glioma cells of origin, inducing cellular motility although also shifting differentiation state and potential toward an astrocytic rather than neuronal histiogenic profile. Moreover, Atrx deficiency drives widespread shifts in chromatin accessibility, histone composition, and transcription in a distribution almost entirely restricted to genomic sites normally bound by the protein. Finally, direct gene targets of Atrx that mediate specific Atrx-deficient phenotypes in vitro exhibit similarly selective misexpression in ATRX-mutant human gliomas. These findings demonstrate that ATRX deficiency and its epigenomic sequelae are sufficient to induce disease-defining oncogenic phenotypes in appropriate cellular and molecular contexts.


Asunto(s)
Glioma/genética , Proteína Nuclear Ligada al Cromosoma X/deficiencia , Proteína Nuclear Ligada al Cromosoma X/genética , Animales , Diferenciación Celular , Línea Celular , Movimiento Celular , Ensamble y Desensamble de Cromatina , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Silenciador del Gen , Genes p53 , Humanos , Ratones Noqueados , Células-Madre Neurales/metabolismo , Células Neuroepiteliales/metabolismo , Fenotipo , Proteína de Unión al GTP rhoA/metabolismo
3.
Neuro Oncol ; 19(9): 1237-1247, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28398584

RESUMEN

BACKGROUND: Gliomas are diverse neoplasms with multiple molecular subtypes. How tumor-initiating mutations relate to molecular subtypes as these tumors evolve during malignant progression remains unclear. METHODS: We used genetically engineered mouse models, histopathology, genetic lineage tracing, expression profiling, and copy number analyses to examine how genomic tumor diversity evolves during the course of malignant progression from low- to high-grade disease. RESULTS: Knockout of all 3 retinoblastoma (Rb) family proteins was required to initiate low-grade tumors in adult mouse astrocytes. Mutations activating mitogen-activated protein kinase signaling, specifically KrasG12D, potentiated Rb-mediated tumorigenesis. Low-grade tumors showed mutant Kras-specific transcriptome profiles but lacked copy number mutations. These tumors stochastically progressed to high-grade, in part through acquisition of copy number mutations. High-grade tumor transcriptomes were heterogeneous and consisted of 3 subtypes that mimicked human mesenchymal, proneural, and neural glioblastomas. Subtypes were confirmed in validation sets of high-grade mouse tumors initiated by different driver mutations as well as human patient-derived xenograft models and glioblastoma tumors. CONCLUSION: These results suggest that oncogenic driver mutations influence the genomic profiles of low-grade tumors and that these, as well as progression-acquired mutations, contribute strongly to the genomic heterogeneity across high-grade tumors.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/patología , Glioma/genética , Glioma/patología , Animales , Transformación Celular Neoplásica/genética , Progresión de la Enfermedad , Genómica/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación
5.
Neuro Oncol ; 18(7): 962-73, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26826202

RESUMEN

BACKGROUND: Glioma stem cells (GSCs) from human glioblastomas (GBMs) are resistant to radiation and chemotherapy and may drive recurrence. Treatment efficacy may depend on GSCs, expression of DNA repair enzymes such as methylguanine methyltransferase (MGMT), or transcriptome subtype. METHODS: To model genetic alterations in human GBM core signaling pathways, we induced Rb knockout, Kras activation, and Pten deletion mutations in cortical murine astrocytes. Neurosphere culture, differentiation, and orthotopic transplantation assays were used to assess whether these mutations induced de-differentiation into GSCs. Genome-wide chromatin landscape alterations and expression profiles were examined by formaldehyde-assisted isolation of regulatory elements (FAIRE) seq and RNA-seq. Radiation and temozolomide efficacy were examined in vitro and in an allograft model in vivo. Effects of radiation on transcriptome subtype were examined by microarray expression profiling. RESULTS: Cultured triple mutant astrocytes gained unlimited self-renewal and multilineage differentiation capacity. These cells harbored significantly altered chromatin landscapes that were associated with downregulation of astrocyte- and upregulation of stem cell-associated genes, particularly the Hoxa locus of embryonic transcription factors. Triple-mutant astrocytes formed serially transplantable glioblastoma allografts that were sensitive to radiation but expressed MGMT and were resistant to temozolomide. Radiation induced a shift in transcriptome subtype of GBM allografts from proneural to mesenchymal. CONCLUSION: A defined set of core signaling pathway mutations induces de-differentiation of cortical murine astrocytes into GSCs with altered chromatin landscapes and transcriptomes. This non-germline genetically engineered mouse model mimics human proneural GBM on histopathological, molecular, and treatment response levels. It may be useful for dissecting the mechanisms of treatment resistance and developing more effective therapies.


Asunto(s)
Astrocitos/citología , Neoplasias Encefálicas/patología , Dacarbazina/análogos & derivados , Resistencia a Antineoplásicos , Glioblastoma/genética , Glioblastoma/patología , Células Madre Neoplásicas/citología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/efectos de la radiación , Línea Celular Tumoral , Dacarbazina/farmacología , Glioblastoma/tratamiento farmacológico , Ratones Transgénicos , Mutación/genética , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Transducción de Señal/efectos de los fármacos , Temozolomida
6.
Neuro Oncol ; 17(1): 12-28, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25246428

RESUMEN

Despite 6 decades of research, only 3 drugs have been approved for astrocytomas, the most common malignant primary brain tumors. However, clinical drug development is accelerating with the transition from empirical, cytotoxic therapy to precision, targeted medicine. Preclinical animal model studies are critical for prioritizing drug candidates for clinical development and, ultimately, for their regulatory approval. For decades, only murine models with established tumor cell lines were available for such studies. However, these poorly represent the genomic and biological properties of human astrocytomas, and their preclinical use fails to accurately predict efficacy in clinical trials. Newer models developed over the last 2 decades, including patient-derived xenografts, genetically engineered mice, and genetically engineered cells purified from human brains, more faithfully phenocopy the genomics and biology of human astrocytomas. Harnessing the unique benefits of these models will be required to identify drug targets, define combination therapies that circumvent inherent and acquired resistance mechanisms, and develop molecular biomarkers predictive of drug response and resistance. With increasing recognition of the molecular heterogeneity of astrocytomas, employing multiple, contemporary models in preclinical drug studies promises to increase the efficiency of drug development for specific, molecularly defined subsets of tumors.


Asunto(s)
Antineoplásicos/uso terapéutico , Astrocitoma/tratamiento farmacológico , Astrocitoma/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Animales , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Ratones
7.
J Vis Exp ; (90): e51763, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25146643

RESUMEN

Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.


Asunto(s)
Astrocitos/patología , Astrocitoma/etiología , Células-Madre Neurales/patología , Alelos , Animales , Astrocitoma/genética , Astrocitoma/patología , Línea Celular Transformada , Ingeniería Genética , Glioblastoma/etiología , Glioblastoma/genética , Glioblastoma/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Oncogenes
8.
Neuro Oncol ; 15(10): 1317-29, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23814263

RESUMEN

BACKGROUND: Glioblastoma (GBM) genomes feature recurrent genetic alterations that dysregulate core intracellular signaling pathways, including the G1/S cell cycle checkpoint and the MAPK and PI3K effector arms of receptor tyrosine kinase (RTK) signaling. Elucidation of the phenotypic consequences of activated RTK effectors is required for the design of effective therapeutic and diagnostic strategies. METHODS: Genetically defined, G1/S checkpoint-defective cortical murine astrocytes with constitutively active Kras and/or Pten deletion mutations were used to systematically investigate the individual and combined roles of these 2 RTK signaling effectors in phenotypic hallmarks of glioblastoma pathogenesis, including growth, migration, and invasion in vitro. A novel syngeneic orthotopic allograft model system was used to examine in vivo tumorigenesis. RESULTS: Constitutively active Kras and/or Pten deletion mutations activated both MAPK and PI3K signaling. Their combination led to maximal growth, migration, and invasion of G1/S-defective astrocytes in vitro and produced progenitor-like transcriptomal profiles that mimic human proneural GBM. Activation of both RTK effector arms was required for in vivo tumorigenesis and produced highly invasive, proneural-like GBM. CONCLUSIONS: These results suggest that cortical astrocytes can be transformed into GBM and that combined dysregulation of MAPK and PI3K signaling revert G1/S-defective astrocytes to a primitive gene expression state. This genetically-defined, immunocompetent model of proneural GBM will be useful for preclinical development of MAPK/PI3K-targeted, subtype-specific therapies.


Asunto(s)
Neoplasias Encefálicas/patología , Transformación Celular Neoplásica/patología , Glioblastoma/patología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfohidrolasa PTEN/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/fisiología , Animales , Apoptosis , Astrocitos/citología , Astrocitos/metabolismo , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Ciclo Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
9.
Brain Res Bull ; 88(1): 72-9, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21684324

RESUMEN

Over the last decade, genetically engineered mouse models have been extensively used to dissect the genetic requirements for neoplastic initiation and progression of diffuse gliomas. While these models faithfully recapitulate the histopathological features of human gliomas, comparative genomic analyses are increasingly being utilized to comprehensively assess their fidelity to recently identified molecular subtypes of these tumors. Future progress with these models will rely on incorporating insights not only from oncogenomics studies of cancer, but also from the developmental neuroscience and stem cell biology fields to design accurate and experimentally tractable models for use in translational cancer research, particularly for experimental therapeutics studies of molecularly defined subtypes of gliomas.


Asunto(s)
Neoplasias Encefálicas/genética , Modelos Animales de Enfermedad , Glioma/genética , Ratones Mutantes Neurológicos , Animales , Transformación Celular Neoplásica/genética , Hibridación Genómica Comparativa , Progresión de la Enfermedad , Ingeniería Genética , Humanos , Ratones
10.
J Clin Invest ; 119(3): 636-49, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19197141

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a lethal progressive lung disease culminating in permanent airway obstruction and alveolar enlargement. Previous studies suggest CTL involvement in COPD progression; however, their precise role remains unknown. Here, we investigated whether the CTL activation receptor NK cell group 2D (NKG2D) contributes to the development of COPD. Using primary murine lung epithelium isolated from mice chronically exposed to cigarette smoke and cultured epithelial cells exposed to cigarette smoke extract in vitro, we demonstrated induced expression of the NKG2D ligand retinoic acid early transcript 1 (RAET1) as well as NKG2D-mediated cytotoxicity. Furthermore, a genetic model of inducible RAET1 expression on mouse pulmonary epithelial cells yielded a severe emphysematous phenotype characterized by epithelial apoptosis and increased CTL activation, which was reversed by blocking NKG2D activation. We also assessed whether NKG2D ligand expression corresponded with pulmonary disease in human patients by staining airway and peripheral lung tissues from never smokers, smokers with normal lung function, and current and former smokers with COPD. NKG2D ligand expression was independent of NKG2D receptor expression in COPD patients, demonstrating that ligand expression is the limiting factor in CTL activation. These results demonstrate that aberrant, persistent NKG2D ligand expression in the pulmonary epithelium contributes to the development of COPD pathologies.


Asunto(s)
Pulmón/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Mucosa Respiratoria/fisiopatología , Humo/efectos adversos , Fumar/efectos adversos , Animales , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Enfisema/etiología , Enfisema/inmunología , Regulación de la Expresión Génica , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Proteínas de la Membrana/genética , Ratones , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología
11.
Exp Mol Pathol ; 83(3): 301-10, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17950725

RESUMEN

BACKGROUND: Persistent macrophage accumulation and alveolar enlargement are hallmark features of chronic obstructive pulmonary disease (COPD). A role for CD8(+) lymphocytes in the development of COPD is suggested based on observations that this T cell subset is increased in the airways and parenchyma of smokers that develop COPD with airflow limitation. In this study, we utilize a mouse model of COPD to examine the contributions of CD8(+) T cells in the persistent macrophage accumulation and airspace enlargement resulting from chronic irritant exposure. METHODS: We analyzed pulmonary inflammation and alveolar destruction in wild-type and Cd8-deficient mice chronically exposed to acrolein, a potent respiratory tract irritant. We further examined cytokine mRNA expression levels by RNase protection assay, matrix metalloproteinase (MMP) activity by gelatin zymography, and epithelial cell apoptosis by active caspase3 immunohistochemistry in wild-type and Cd8-deficient mice exposed chronically to acrolein. RESULTS: These studies demonstrate that CD8(+) T cells are important mediators of macrophage accumulation in the lung and the progressive airspace enlargement in response to chronic acrolein exposures. The expression of several inflammatory cytokines (IP-10, IFN-gamma, IL-12, RANTES, and MCP-1), MMP2 and MMP9 gelatinase activity, and caspase3 immunoreactivity in pulmonary epithelial cells were attenuated in the Cd8-deficient mice compared to wild-type. CONCLUSIONS: These results indicate that CD8(+) T cells actively contribute to macrophage accumulation and the development of irritant-induced airspace enlargement.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Irritantes , Pulmón , Macrófagos/inmunología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Acroleína/inmunología , Acroleína/toxicidad , Animales , Líquido del Lavado Bronquioalveolar/citología , Antígenos CD8/genética , Antígenos CD8/inmunología , Citocinas/genética , Citocinas/inmunología , Humanos , Irritantes/inmunología , Irritantes/toxicidad , Pulmón/anatomía & histología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fumar , Subgrupos de Linfocitos T/inmunología
12.
Am J Physiol Lung Cell Mol Physiol ; 291(2): L222-31, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16473864

RESUMEN

Immune surveillance of the airways is critical to maintain the integrity and health of the lung. We have identified a family of ligands expressed on the surface of stressed airway epithelial cells whose function is to bind the NKG2D-activating receptor found on several pulmonary lymphocytes, including natural killer cells, gammadelta(+) T cells, and CD8(+) T cells. We employed real-time PCR and flow cytometry in normal and transformed airway epithelial cell to demonstrate that major histocompatibility complex class I chain-related (MIC) B and the UL-16 binding protein (ULBP) ligands (ULBP1-4) are ubiquitously expressed at the mRNA level in all cell lines. MICA/B surface expression was present on 70% of transformed cell lines but was undetectable on primary cells. We demonstrate that MICA/B and ULBP 1, 2, 3, and 4 expression is rare or absent on the cell surface of unstimulated normal human bronchial epithelial cells although transcripts and intracellular proteins are present. Normal human bronchial epithelial cells exposed to 0.3 mM hydrogen peroxide exhibit an induction of all ligands examined on the cell surface. Surface expression is independent of changes in transcript level or total cellular protein and is mediated by the ERK family of mitogen-activated protein kinases. The induction of NKG2D ligands on stressed airway epithelial cells represents a potentially important mechanism of immune cell activation in regulation of pulmonary health and disease.


Asunto(s)
Células Epiteliales/metabolismo , Ligandos , Receptores Inmunológicos/metabolismo , Mucosa Respiratoria/citología , Animales , Proteínas Portadoras/metabolismo , Línea Celular , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Ligadas a GPI , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Subfamilia K de Receptores Similares a Lectina de Células NK , Oxidantes/farmacología , Estrés Oxidativo , Isoformas de Proteínas/metabolismo , Receptores Inmunológicos/genética , Receptores de Células Asesinas Naturales , Mucosa Respiratoria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA