Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 35(38)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958589

RESUMEN

Green energy technology is generally becoming one of hot issues that need to be solved due to the adverse effects on the environment of fossil fuels. One of the strategies being studied and developed by theorists and experimentalists is the use of photoelectrochemical (PEC) cells, which are emerging as a candidate to produce hydrogen from water splitting. However, creating photoelectrodes that meet the requirements for PEC water splitting has emerged as the primary obstacle in bringing this technology to commercial fruition. Here, we construct a heterostructure, which consists of MoS2/TiO2/Au nanoparticles (NPs) to overcome the drawbacks of the photoanode. Owing to the dependence on charge transfer, the bandgap of MoS2/TiO2and the utilization the Au NPs as a stimulant for charges separation of TiO2by localized surface plasmon resonances effect as well as the increase of hot electron injection to cathode, leading to photocatalytic activities are improved. The results have recorded a significant increase in the photocurrent density from 2.3µAcm-2of TiO2to approximately 16.3µAcm-2of MoS2/TiO2/Au NPs. This work unveils a promising route to enhance the visible light adsorption and charge transfer in photo-electrode of the PEC cells by combining two-dimensional materials with metal NPs.

2.
Environ Res ; 216(Pt 3): 114660, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36368373

RESUMEN

Tetracycline is currently one of the most consumed antibiotics for human therapy, veterinary purpose, and agricultural activities. Tetracycline worldwide consumption is expected to rise by about more than 30% by 2030. The persistence of tetracycline has necessitated implementing and adopting strategies to protect aquatic systems and the environment from noxious pollutants. Here, graphitic carbon nitride-based photocatalytic technology is considered because of higher visible light photocatalytic activity, low cost, and non-toxicity. Thus, this review highlights the recent progress in the photocatalytic degradation of tetracycline using g-C3N4-based photocatalysts. Additionally, properties, worldwide consumption, occurrence, and environmental impacts of tetracycline are comprehensively addressed. Studies proved the occurrence of tetracycline in all water matrices across the world with a maximum concentration of 54 µg/L. Among different g-C3N4-based materials, heterojunctions exhibited the maximum photocatalytic degradation of 100% with the reusability of 5 cycles. The photocatalytic membranes are found to be feasible due to easiness in recovery and better reusability. Limitations of g-C3N4-based wastewater treatment technology and efficient solutions are also emphasized in detail.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Humanos , Catálisis , Tetraciclina , Antibacterianos
3.
Environ Res ; 229: 115963, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37105287

RESUMEN

Hydrogen (H2) is a possible energy transporter and feedstock for energy decarbonization, transportation, and chemical sectors while reducing global warming's consequences. The predominant commercial method for producing H2 today is steam methane reforming (SMR). However, there is still room for development in process intensification, energy optimization, and environmental concerns related to CO2 emissions. Reactors using metallic membranes (MRs) can handle both problems. Compared to traditional reactors, MRs operates at substantially lower pressures and temperatures. As a result, capital and operational costs may be significantly cheaper than traditional reactors. Furthermore, metallic membranes (MMs), particularly Pd and its alloys, naturally permit only H2 permeability, enabling the production of a stream with a purity of up to 99.999%. This review describes several methods for H2 production based on the energy sources utilized. SRM with CO2 capture and storage (CCUS), pyrolysis of methane, and water electrolysis are all investigated as process technologies. A debate based on a color code was also created to classify the purity of H2 generation. Although producing H2 using fossil fuels is presently the least expensive method, green H2 generation has the potential to become an affordable alternative in the future. From 2030 onward, green H2 is anticipated to be less costly than blue hydrogen. Green H2 is more expensive than fossil-based H2 since it uses more energy. Blue H2 has several tempting qualities, but the CCUS technology is pricey, and blue H2 contains carbon. At this time, almost 80-95% of CO2 can be stored and captured by the CCUS technology. Nanomaterials are becoming more significant in solving problems with H2 generation and storage. Sustainable nanoparticles, such as photocatalysts and bio-derived particles, have been emphasized for H2 synthesis. New directions in H2 synthesis and nanomaterials for H2 storage have also been discussed. Further, an overview of the H2 value chain is provided at the end, emphasizing the financial implications and outlook for 2050, i.e., carbon-free H2 and zero-emission H2.


Asunto(s)
Dióxido de Carbono , Hidrógeno , Agua , Vapor , Metano
4.
Environ Res ; 222: 115337, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36682442

RESUMEN

MXene is a magical class of 2D nanomaterials and emerging in many applications in diverse fields. Due to the multiple advantageous characteristics of its fundamental components, such as structural, physicochemical, optical, and occasionally even biological characteristics. However, it is limited in the biomedical industry due to poor physiological stability, decomposition rate, and lack of controlled and sustained drug release. These limitations can be overcome when MXene forms composites with other 2D materials. The efficiency of pure MXene in biomedicine is inferior to that of MXene-based composites. The availability of functionality on the exterior part of MXene has a key role in the modification of their surface and their characteristics. This review provides an extensive discussion on the synthesizing of MXene and the role of the surface functionalities on the efficiency of MXene. In addition, a detailed discussion of the biomedical applications of MXene, including antibacterial activity, regenerative medicine, CT scan capability, drug delivery, diagnostics, MRI and biosensing capability. Furthermore, an outline of the future problems and challenges of MXene-based materials for biomedical applications was narrated. Thus, these salient features showcase the potential of MXene-based material and will be a breakthrough in biomedical applications in the near future.


Asunto(s)
Antibacterianos , Nanoestructuras , Sistemas de Liberación de Medicamentos , Industrias
5.
Environ Res ; 220: 115190, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36587718

RESUMEN

This study aims to investigate the distribution and ecological risk assessment of microplastics (MPs) in peatland areas located in Long An province, Vietnam's Mekong Delta. In general, polyvinyl chloride (60.7%), polyethylene (25.8%), and polypropylene (11.9%) were the most abundant polymers determined in the thirty sediment samples. The hazard index (HI) remarked a level of III for MPs contamination in Tan Thanh and Thanh Hoa districts. The pollution load index (PLI) and potential ecological risk index (RI) indicated that the contamination risk of MPs polymer types in the studied sites is relatively high. According to PLI values, MPs levels of peatlands in Tan Thanh and Thanh Hoa are high and moderate, respectively, while the peatland sediments in Duc Hue district are less contaminated. Furthermore, ecological risk indexes in the peatland areas were relatively high, with PLIoverall (level III); HIoverall (level V), and RIoverall (extreme danger). Hence, this study proposed a SWOT framework for challenges of MPs pollution in order to manage peatlands appropriately and minimize ecological risks. As a result, several practical strategies and appropriate approaches have been recommended to reduce microplastics towards a circular economy. These findings provide the initial quantitative assessment insights into hazard levels and ecological impacts of MPs in Vietnam's Mekong Delta peatlands.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Vietnam , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Polímeros , Sedimentos Geológicos
6.
Environ Res ; 216(Pt 1): 114422, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36162476

RESUMEN

Nowadays, emerging hazardous pollutants have caused many harmful effects on the environment and human health, calling for the state of the art methods for detection, qualification, and treatment. Metal-organic frameworks are porous, flexible, and versatile materials with unique structural properties, which can solve such problems. In this work, we reviewed the synthesis, activation, and characterization, and potential applications of NH2-MIL-53(Al). This material exhibited intriguing breathing effects, and obtained very high surface areas (182.3-1934 m2/g) with diverse morphologies. More importantly, NH2-MIL-53(Al) based materials could be used for the detection and removal of various toxic pollutants such as organic dyes, pharmaceuticals, herbicides, insecticides, phenols, heavy metals, and fluorides. We shed light on plausible adsorption mechanisms such as hydrogen bonds, π-π stacking interactions, and electrostatic interactions onto NH2-MIL-53(Al) adsorbents. Interestingly, NH2-MIL-53(Al) based adsorbents could be recycled for many cycles with high stability. This review also recommended that NH2-MIL-53(Al) based materials can be a good platform for the environmental remediation fields.


Asunto(s)
Contaminantes Ambientales , Estructuras Metalorgánicas , Humanos , Adsorción
7.
Environ Res ; 218: 114948, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36455634

RESUMEN

Water usage increased alongside its competitiveness due to its finite amount. Yet, many industries still rely on this finite resource thus recalling the need to recirculate their water for production. Circular bioeconomy is presently the new approach emphasizing on the 'end-of-life' concept with reusing, recycling, and recovering materials. Microalgae are the ideal source contributing to circular bioeconomy as it exhibits fast growth and adaptability supported by biological rigidity which in turn consumes nutrients, making it an ideal and capable bioremediating agent, therefore allowing water re-use as well as its biomass potential in biorefineries. Nevertheless, there are challenges that still need to be addressed with consideration of recent advances in cultivating microalgae in wastewater. This review aimed to investigate the potential of microalgae biomass cultivated in wastewater. More importantly, how it'll play a role in the circular bioeconomy. This includes an in-depth look at the production of goods coming from wastes tattered by emerging pollutants. These emerging pollutants include microplastics, antibiotics, ever-increasingly sewage water, and heavy metals which have not been comprehensively compared and explored. Therefore, this review is aiming to bring new insights to researchers and industrial stakeholders with interest in green alternatives to eventually contribute towards environmental sustainability.


Asunto(s)
Contaminantes Ambientales , Microalgas , Aguas Residuales , Biodegradación Ambiental , Plásticos , Biomasa , Biocombustibles
8.
Environ Res ; 227: 115800, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37003549

RESUMEN

The considerable increase in world energy consumption owing to rising global population, intercontinental transportation and industrialization has posed numerous environmental concerns. Particularly, in order to meet the required electricity supply, thermal power plants for electricity generation are widely used in many countries. However, an annually excessive quantity of waste fly ash up to 1 billion tones was globally discarded from the combustion of various carbon-containing feedstocks in thermoelectricity plants. About half of the industrially generated fly ash is dumped into landfills and hence causing soil and water contamination. Nonetheless, fly ash still contains many valuable components and possesses outstanding physicochemical properties. Utilizing waste fly ash for producing value-added products has gained significant interests. Therefore, in this work, we reviewed the current implementation of fly ash-derived materials, namely, zeolite and geopolymer as efficient adsorbents for the environmental treatment of flue gas and polluted water. Additionally, the usage of fly ash as a catalyst support for the photodegradation of organic pollutants and reforming processes for the corresponding wastewater remediation and H2 energy generation is thoroughly covered. In comparison with conventional carbon-based adsorbents, fly ash-derived geopolymer and zeolite materials reportedly exhibited greater heavy metal ions removal and reached the maximum adsorption capacity of about 150 mg g-1. As a support for biogas reforming process, fly ash could enhance the activity of Ni catalyst with 96% and 97% of CO2 and CH4 conversions, respectively.


Asunto(s)
Restauración y Remediación Ambiental , Zeolitas , Ceniza del Carbón , Zeolitas/química , Agua , Carbono/química
9.
J Environ Manage ; 342: 118191, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37210821

RESUMEN

This paper aimed to highlight the succession of biochar addition for soil amendment and contaminants remediation during composting process. Biochar incorporated into the compost mixture promotes composting performance and enhances contaminants reduction. Co-composting with biochar for soil biota has been demonstrated via modified soil biological community abundance and diversity. On the other hand, adverse alterations to soil properties were noted, which had a negative impact on the communication of microbe-to-plant interactions within the rhizosphere. As a result, these changes influenced the competition between soilborne pathogens and beneficial soil microorganisms. Co-composting with biochar promoted the heavy metals (HMs) remediation efficiency in contaminated soils by around 66-95%. Notably, applying biochar during composting could improve nutrient retention and mitigate leaching. The adsorption of nutrients such as nitrogen and phosphorus compounds by biochar can be applied to manage environmental contamination and presents an excellent opportunity to enhance soil quality. Additionally, the various specific functional groups and large specific surface areas of biochar allow for excellent adsorption of persistent pollutants (e.g., pesticides, polychlorinated biphenyls (PCBs)) and emerging organic pollutants, such as microplastic, phthalate acid esters (PAEs) during co-composting. Finally, future perspectives, research gaps, and recommendations for further studies are highlighted, and potential opportunities are discussed.


Asunto(s)
Compostaje , Contaminantes Ambientales , Contaminantes del Suelo , Suelo , Plásticos , Contaminantes del Suelo/análisis , Carbón Orgánico
10.
Environ Res ; 213: 113613, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35697083

RESUMEN

Metformin is a wonder drug used as an anti-hypoglycemic medication; it is also used as a cancer suppression medicament. Metformin is a first line of drug choice used by doctors for patients with type 2 diabetes. It is used worldwide where the drug's application varies from an anti-hypoglycemic medication to cancer oppression and as a weight loss treatment drug. Due to its wide range of usage, metformin and its byproducts are found in waste water and receiving aquatic environment. This leads to the accumulation of metformin in living beings and the environment where excess concentration levels can lead to ailments such as lactic acidosis or vitamin B12 deficiency. This drug could become of future water treatment concerns with its tons of production per year and vast usage. As a result of continuous occurrence of metformin has demanded the need of implementing and adopting different strategies to save the aquatic systems and the exposure to metformin. This review discuss the various methods for the elimination of metformin from wastewater. Along with that, the properties, occurrence, and health and environmental impacts of metformin are addressed. The different analytical methods for the detection of metformin are also explained. The main findings are discussed with respect to the management of metformin as an emerging contaminants and the major recommendations are discussed to understand the major research gaps.


Asunto(s)
Acidosis Láctica , Diabetes Mellitus Tipo 2 , Metformina , Acidosis Láctica/inducido químicamente , Acidosis Láctica/tratamiento farmacológico , Diabetes Mellitus Tipo 2/epidemiología , Humanos , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/toxicidad , Metformina/uso terapéutico , Metformina/toxicidad , Aguas Residuales
11.
Environ Res ; 210: 112902, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35167851

RESUMEN

Chromium is a toxic heavy metal prevalent in higher levels in aqueous matrices owing to industrial applications. Whilst being a key player in industries, the environmental issues caused by Cr(VI) are highly deleterious. Adsorptive remediation is found to be an effective method adopted by researchers in the past decades for Cr(VI) removal from water streams in which variety of naturally available biosorbents have been explored for handling Cr(VI). This review article briefly sketches up the biosorptive potential of plant-based biosorbents used in raw and chemically modified form for the optimum exclusion of Cr(VI) from aqueous sources. Mechanisms and kinetic behavior of the removal process are also discussed. pH of the solution and initial Cr(VI) concentration were found to be the key parameters in Cr removal. The mechanism of Cr removal from aqueous systems was elucidated to be either adsorption or adsorption-coupled-reduction. After precise discussion on various plant-based biosorbents with their maximum adsorption capacities, desorption and regeneration potential, it is perceived that plant-based biosorbents are superior options for Cr(VI) elimination from aqueous streams.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cromo/análisis , Concentración de Iones de Hidrógeno , Cinética , Plantas , Soluciones , Agua , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
12.
Environ Res ; 204(Pt A): 111926, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34461120

RESUMEN

The present study aimed to assess the efficiency of silver bio-nanoparticles (Ag-NPs) in inactivating of the Aspergillus fumigatus, A. parasiticus and A. flavus var. columnaris and A. aculeatus spores. The AgNPs were synthesized in secondary metabolic products of Penicillium pedernalens 604 EAN. The inactivation process was optimized by response surface methodology (RSM) as a function of Ag NPs volume (1-10 µL/mL); time (10-120 min); pH (5-8); initial fungal concentrations (log10) (3-6). The artificial neural network (ANN) model was used to understand the behavior of spores for the factors affecting inactivation process. The best conditions to achieved SAL 10-6 of the fungal spores were recorded with 3.46 µl/mL of AgNPs, after 120 min at pH 5 and with 6 log of initial fungal spore concentrations, at which 5.99 vs. 6.09 (SAL 10-6) log reduction was recorded in actual and predicted results respectively with coefficient of 87.00%. The ANN revealed that the timehas major contribution in the inactivation process compare to Ag NPs volume. The fungal spores were totally inactivated (SAL 10-6, 6 log reduction with 99.9999%) after 110 min of the inactivation process, 10 min more was required to insure the irreversible inactivation of the fungal spores. The absence of protease and cellulase enzymes production confirm the total inactivation of the fungal spores. FESEM analysis revealed that the AgNPs which penetrated the fungal spores leading to damage and deform the fungal spore morphology. The AFM analysis confirmed the total spore surface damage. The bands in the range of the Raman spectroscopy from 1300 to 1600 cm-1 in the inactivated spores indicate the presence of CH3, CH2 and the deformation of lipids released outside the spore cytoplasm. These finding indicate that the AgNPs has high potential as a green alternative inactivation process for the airborne fungal spores.


Asunto(s)
Nanopartículas , Penicillium , Redes Neurales de la Computación , Plata , Esporas Fúngicas
13.
Environ Res ; 214(Pt 2): 113925, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35868583

RESUMEN

The pollution of organic dyes such as malachite green is one of the globally critical issues, calling for efficient mitigation methods. Herein, we developed green Mn3O4 nanoparticles synthesized using natural compounds extracted from Costus woodsonii flowers under an ultrasound-assisted mode. The materials were characterized using several physicochemical techniques such as Fourier-transform infrared spectroscopy, X-ray diffraction, Energy-dispersive X-ray spectroscopy, scanning electron microscopy, Raman spectroscopy, and N2 adsorption desorption isotherm measurement. The X-ray diffraction and N2 isotherm plots confirmed the presence of tetragonal γ-Mn3O4 phase and mesoporous structure, respectively. Carbonyl groups derived from flavonoids or carboxylic compounds were found in the surface of green Mn3O4 nanoparticles. The effect of pH, contact time, dose, and concentration on the adsorption of malachite green over green Mn3O4 was carried out. The maximum malachite green adsorption capacity for green Mn3O4 nanoparticles was 101-162 mg g-1. Moreover, kinetic and isotherm adsorption of malachite green obeyed Langmuir (Radj.2 = 0.980-0.995) and pseudo first-order models (Radj.2 = 0.996-1.00), respectively. Adsorption of malachite green over green Mn3O4 was a thermodynamically spontaneous process due to negative Gibbs free energy values (ΔGο < 0). Green Mn3O4 nanoparticles offered a high stability through the FR-IR spectra analysis. With a good recyclability of 4 cycles, green Mn3O4 nanoparticles can be used as potential adsorbent for removing malachite green dye from water.


Asunto(s)
Costus , Nanopartículas , Contaminantes Químicos del Agua , Adsorción , Flores/química , Concentración de Iones de Hidrógeno , Cinética , Colorantes de Rosanilina , Contaminantes Químicos del Agua/análisis
14.
Environ Res ; 205: 112453, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34843726

RESUMEN

To explore green technology for wheat straw pretreatment, this study combined the microwave or hydrothermal with ionic liquid ([Bmim][OAc]) on wheat straw followed by rumen fermentation. The optimal conditions of microwave assisted ionic liquids pretreatment (M-I) and hydrothermal assisted ionic liquids pretreatment (H-I) treatment were 360 W and 200 °C, and the corresponding lignin removal rates reached 35.3% and 25.4%, respectively. Rumen fermentation showed that the highest volatile fatty acid (VFA) yield was found in M-I group, followed by H-I group at 234 and 180 mg/g, respectively. As for enzymatic hydrolysis, the saccharification rates at 3 days of M-I (360 W) and H-I (200 °C) were determined to be 393 and 320 mg/g. The optimal ionic liquid dosage was determined to be 30% in consideration of cost and VFA conversion rate. M-I pretreatment plus the rumen fermentation enjoyed the benefit of no enzyme addition and high product recovery, which was worth further investigating.


Asunto(s)
Líquidos Iónicos , Anaerobiosis , Animales , Fermentación , Hidrólisis , Microondas , Rumen
15.
Environ Res ; 212(Pt C): 113380, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35537493

RESUMEN

The current work reviews the quantitative microbiological risk assessment of antibiotic-resistant bacteria (ARB) in greywater and discusses the international strategies currently used for reducing antimicrobial resistance. The work highlights the countries that have a plan for the treatment and reuse of greywater and the current guidelines used in these countries. The paper also investigates the role of greywater in the distribution of antimicrobial resistance because of antibiotics and ARB. A bibliometric analysis was conducted for the studies on greywater, pathogenic bacteria, and antibiotics. The studies obtained from Scopus database were screened and compared to obtain the data for global antimicrobial resistance in 2000 and 2021. The strategies used by developed countries that led to the reduction in the recorded antimicrobial resistance are also listed. The challenges and limitations associated with the current plans adopted by several countries to minimise the spreading of the antimicrobial resistance are highlighted, while proposed solutions are provided. Two main issues associated with the distribution of antimicrobial resistance are (1) the absence of a plan in developing counties and presence of antimicrobial agents and ARB in the environment and (2) the difficulties in the current treatment technologies used for the removal of these antimicrobial agents from the water and wastewater. Based on the review and discussion, it was concluded that more advanced technologies are required to ensure total elimination of the antimicrobial agents and ARB from the environment. In addition, a new international standard should be drafted for the ARB in the environment, as they differ from the one currently used for medical applications.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos , Bacterias , Aguas Residuales/microbiología
16.
Environ Res ; 209: 112831, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35123962

RESUMEN

The abundance of antibiotic-resistant bacteria in the prawn pond effluents can substantially impact the natural environment. The settlement ponds, which are the most common treatment method for farms wastewater, might effectively reduce the suspended solids and organic matter. However, the method is insufficient for bacterial inactivation. The current paper seeks to highlight the environmental issue associated with the distribution of antibiotic resistant bacteria (ARB) from prawn farm wastewater and their impact on the microbial complex community in the surface water which receiving these wastes. The inactivation of antibiotic-resistant bacteria in prawn wastewater is strongly recommended because the presence of antibiotic-resistant bacteria in the environment causes water pollution and public health issues. The nanoparticles are more efficient for bacterial inactivation. They are widely accepted due to their high chemical and mechanical stability, broad spectrum of radiation absorption, high catalytic activity, and high antimicrobial activity. Many studies have examined the use of fungi or plants extract to synthesis zinc oxide nanoparticles (ZnO NPs). It is evident from recent papers in the literature that green synthesized ZnO NPs from microbes and plant extracts are non-toxic and effective. ZnO NPs inactivate the bacterial cells as a function for releasing reactive oxygen species (ROS) and zinc ions. The inactivation of antibiotic-resistant bacteria tends to be more than 90% which exhibit strong antimicrobial behavior against bacterial species.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos/farmacología , Bacterias/metabolismo , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Óxido de Zinc/farmacología
17.
Environ Chem Lett ; 20(3): 1645-1669, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35350388

RESUMEN

The rising global population is inducing a fast increase in the amount of municipal waste and, in turn, issues of rising cost and environmental pollution. Therefore, alternative treatments such as waste-to-energy should be developed in the context of the circular economy. Here, we review the conversion of municipal solid waste into energy using thermochemical methods such as gasification, combustion, pyrolysis and torrefaction. Energy yield depends on operating conditions and feedstock composition. For instance, torrefaction of municipal waste at 200 °C generates a heating value of 33.01 MJ/kg, while the co-pyrolysis of cereals and peanut waste yields a heating value of 31.44 MJ/kg at 540 °C. Gasification at 800 °C shows higher carbon conversion for plastics, of 94.48%, than for waste wood and grass pellets, of 70-75%. Integrating two or more thermochemical treatments is actually gaining high momentum due to higher energy yield. We also review reforming catalysts to enhance dihydrogen production, such as nickel on support materials such as CaTiO3, SrTiO3, BaTiO3, Al2O3, TiO3, MgO, ZrO2. Techno-economic analysis, sensitivity analysis and life cycle assessment are discussed.

18.
Environ Chem Lett ; 20(1): 141-152, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34602923

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously evolving and four variants of concern have been identified so far, including Alpha, Beta, Gamma and Delta variants. Here we review the indirect effect of preventive measures such as the implementation of lockdowns, mandatory face masks, and vaccination programs, to control the spread of the different variants of this infectious virus on the environment. We found that all these measures have a considerable environmental impact, notably on waste generation and air pollution. Waste generation is increased due to the implementation of all these preventive measures. While lockdowns decrease air pollution, unsustainable management of face mask waste and temperature-controlled supply chains of vaccination potentially increases air pollution.

19.
Environ Chem Lett ; 20(2): 1421-1451, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35018167

RESUMEN

Water contamination is an environmental burden for the next generations, calling for advanced methods such as adsorption to remove pollutants. For instance, unwanted biowaste and invasive plants can be converted into biosorbents for environmental remediation. This would partly solve the negative effects of invasive plants, estimated at 120 billion dollars in the USA. Here we review the distribution, impact, and use of invasive plants for water treatment, with emphasis on the preparation of biosorbents and removal of pollutants such as cadmium, lead, copper, zinc, nickel, mercury, chromate, synthetic dyes, and fossil fuels. Those biosorbents can remove 90-99% heavy metals from aqueous solutions. High adsorption capacities of 476.190 mg/g for synthetic dyes and 211 g/g for diesel oils have been observed. We also discuss the regeneration of these biosorbents.

20.
Environ Chem Lett ; 20(2): 1309-1331, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35035338

RESUMEN

Pollution and diseases such as the coronavirus pandemic (COVID-19) are major issues that may be solved partly by nanotechnology. Here we review the synthesis of ZrO2 nanoparticles and their nanocomposites using compounds from bacteria, fungi, microalgae, and plants. For instance, bacteria, microalgae, and fungi secret bioactive metabolites such as fucoidans, digestive enzymes, and proteins, while plant tissues are rich in reducing sugars, polyphenols, flavonoids, saponins, and amino acids. These compounds allow reducing, capping, chelating, and stabilizing during the transformation of Zr4+ into ZrO2 nanoparticles. Green ZrO2 nanoparticles display unique properties such as a nanoscale size of 5-50 nm, diverse morphologies, e.g. nanospheres, nanorods and nanochains, and wide bandgap energy of 3.7-5.5 eV. Their high stability and biocompatibility are suitable biomedical and environmental applications, such as pathogen and cancer inactivation, and pollutant removal. Emerging applications of green ZrO2-based nanocomposites include water treatment, catalytic reduction, nanoelectronic devices, and anti-biofilms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA