Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Inflamm Res ; 71(5-6): 641-652, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35347345

RESUMEN

OBJECT: Phosphatidylserine-containing liposomes (PSLs) can mimic the immunomodulatory effects of apoptotic cells by binding to the phosphatidylserine receptors of macrophages. Sodium butyrate, an antiinflammatory short-chain fatty acid, is known to facilitate the M2 polarization of macrophages. This study aimed to investigate the effect of sodium butyrate on PSLs-induced macrophage polarization. METHODS: PSLs physical properties and cellular uptake tests, reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, immunofluorescence staining, and flow cytometry analysis were performed to assess the polarization-related indicators of M1/M2 macrophages. RESULTS: The results showed that sodium butyrate did not affect the size and cellular uptake of PSLs. For M1 macrophage polarization, sodium butyrate significantly intensified the antiinflammatory function of PSLs, inhibiting LPS-induced proinflammatory genes expression, cytokines and enzyme release (tumor necrosis factor-alpha, interleukin (IL)-1ß, IL-6, and inducible nitric oxide synthase), as well as CD86 (M1 marker) expression. In addition to the enhancing effect of antiinflammation, sodium butyrate also promoted PSL-induced M2 macrophages polarization, especially elevated thymus and activation-regulated chemokine (TARC) and arginase-1 (Arg-1) enzyme levels which are involved in tissue repair. CONCLUSION: Sodium butyrate enhanced antiinflammatory properties and M2-polarization inducing effect of PSLs. Therefore, sodium butyrate may represent a novel approach to enhance PSL-induced macrophage polarization.


Asunto(s)
Liposomas , Fosfatidilserinas , Antiinflamatorios/farmacología , Ácido Butírico/metabolismo , Ácido Butírico/farmacología , Liposomas/metabolismo , Liposomas/farmacología , Activación de Macrófagos , Macrófagos , Fosfatidilserinas/metabolismo , Fosfatidilserinas/farmacología
2.
Biochem Pharmacol ; 198: 114978, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35218740

RESUMEN

Abdominal aortic aneurysm (AAA) is a common inflammatory vascular disease. Angiotensin II (Ang II) involves in AAA progression by promoting the proliferation and migration of vascular smooth muscle cells, the degradation of extracellular matrices, and the generation of ROS to lead to vascular inflammation. Carbon monoxide releasing molecule-2 (CORM-2) is known to exert anti-inflammatory and antioxidant activities. However, it remains unclear whether CORM-2 can suppress Ang II-induced vascular inflammation to prevent AAA progression. Therefore, this study aimed to investigate the vasoprotective effects of CORM-2 against Ang II-induced inflammatory responses of human aortic smooth muscle cells (HASMCs) and the underlying mechanisms of those effects. The results showed that Ang II induced inflammatory responses of HASMCs via NADPH oxidase- and mitochondria-derived ROS/NF-κB/IL-6/Jak2/Stat3 pathway which was attenuated by the pretreatment with CORM-2. Additionally, CORM-2 further exhibited anti-inflammatory activities in Ang II-stimulated HASMCs, as indicated by the reduction of monocyte adhesion to HASMCs and migration of HASMCs via the suppression of ICAM-1 and VCAM-1 as well as MMP-2 and MMP-9 levels, respectively. Moreover, Ang II-induced COX-2-mediated PGE2 secretion was also inhibited by the pretreatment with CORM-2. Importantly, our data demonstrated that CORM-2 reversed Ang II-induced IL-6 overexpression dependent on Nrf2 activation and HO-1 expression. Taken together, the present study indicates that CORM-2-induced Nrf2/HO-1 alleviates IL-6/Jak2/Stat3-mediated inflammatory responses to Ang II by inhibiting NADPH oxidase- and mitochondria-derived ROS, suggesting that CORM-2 is a promising pharmacologic candidate to reverse the pathological changes involved in the inflammation of vessel wall for the prevention and treatment of AAA.


Asunto(s)
Angiotensina II , NADPH Oxidasas , Angiotensina II/metabolismo , Antiinflamatorios/uso terapéutico , Monóxido de Carbono/metabolismo , Humanos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-6/metabolismo , Janus Quinasa 2/metabolismo , Mitocondrias/metabolismo , Miocitos del Músculo Liso , NADPH Oxidasas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Compuestos Organometálicos , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo
3.
Redox Biol ; 46: 102124, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34507160

RESUMEN

Carbon monoxide (CO) is now well recognized a pivotal endogenous signaling molecule in mammalian lives. The proof-of-concept employing chemical carriers of exogenous CO as prodrugs for CO release, also known as CO-releasing molecules (CO-RMs), has been appreciated. The major advantage of CO-RMs is that they are able to deliver CO to the target sites in a controlled manner. There is an increasing body of experimental studies suggesting the therapeutic potentials of CO and CO-RMs in different cancer models. This review firstly presents a short but crucial view concerning the characteristics of CO and CO-RMs. Then, the anticancer activities of CO-RMs that target many cancer hallmarks, mainly proliferation, apoptosis, angiogenesis, and invasion and metastasis, are discussed. However, their anticancer activities are varying and cell-type specific. The aerobic metabolism of molecular oxygen inevitably generates various oxygen-containing reactive metabolites termed reactive oxygen species (ROS) which play important roles in both physiology and pathophysiology. Although ROS act as a double-edged sword in cancer, both sides of which may potentially have been exploited for therapeutic benefits. The main focus of the present review is thus to identify the possible signaling network by which CO-RMs can exert their anticancer actions, where ROS play the central role. Another important issue concerning the potential effect of CO-RMs on the aerobic glycolysis (the Warburg effect) which is a feature of cancer metabolic reprogramming is given before the conclusion with future prospects on the challenges of developing CO-RMs into clinically pharmaceutical candidates in cancer therapy.


Asunto(s)
Monóxido de Carbono , Neoplasias , Animales , Biología , Neoplasias/tratamiento farmacológico , Oxígeno , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA