Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem ; 100: 117617, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306881

RESUMEN

CD44, a ubiquitously expressed transmembrane receptor, plays a crucial role in cell growth, migration, and tumor progression. Dimerization of CD44 is a key event in signal transduction and has emerged as a potential target for anti-tumor therapies. Palmitoylation, a posttranslational modification, disrupts CD44 dimerization and promotes CD44 accumulation in ordered membrane domains. However, the effects of palmitoylation on the structure and dynamics of CD44 at atomic resolution remain poorly understood. Here, we present a semisynthetic approach combining solid-phase peptide synthesis, recombinant expression, and native chemical ligation to investigate the impact of palmitoylation on the cytoplasmic domain (residues 669-742) of CD44 (CD44ct) by NMR spectroscopy. A segmentally isotope-labeled and site-specifically palmitoylated CD44 variant enabled NMR studies, which revealed chemical shift perturbations and indicated local and long-range conformational changes induced by palmitoylation. The long-range effects suggest altered intramolecular interactions and potential modulation of membrane association patterns. Semisynthetic, palmitoylated CD44ct serves as the basis for studying CD44 clustering, conformational changes, and localization within lipid rafts, and could be used to investigate its role as a tumor suppressor and to explore its therapeutic potential.


Asunto(s)
Receptores de Hialuranos , Lipoilación , Transducción de Señal , Receptores de Hialuranos/química
2.
ACS Chem Biol ; 18(8): 1760-1771, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37449780

RESUMEN

Non-enzymatic posttranslational modifications are believed to affect at least 30% of human proteins, commonly termed glycation. Many of these modifications are implicated in various pathological conditions, e.g., cataract, diabetes, neurodegenerative diseases, and cancer. Chemical protein synthesis enables access to full-length proteins carrying site-specific modifications. One such modification, argpyrimidine (Apy), has been detected in human small heat shock protein Hsp27 and closely related proteins in patient-derived tissues. Thus far, studies have looked into only artificial mixtures of Apy modifications, and only one has analyzed Apy188. We were interested in understanding the impact of such individual Apy modifications on five different arginine sites within the crucial N-terminal domain of Hsp27. By combining protein semisynthesis with biochemical assays on semisynthetic Hsp27 analogues with single-point Apy modification at those sites, we have shown how a seemingly minimal modification within this region results in dramatically altered functional attributes.


Asunto(s)
Proteínas de Choque Térmico , Reacción de Maillard , Humanos , Pliegue de Proteína , Procesamiento Proteico-Postraduccional
3.
RSC Chem Biol ; 2(5): 1441-1461, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34704048

RESUMEN

Posttranslational modifications can alter protein structures, functions and locations, and are important cellular regulatory and signalling mechanisms. Spectroscopic techniques such as nuclear magnetic resonance, infrared and Raman spectroscopy, as well as small-angle scattering, can provide insights into the structural and dynamic effects of protein posttranslational modifications and their impact on interactions with binding partners. However, heterogeneity of modified proteins from natural sources and spectral complexity often hinder analyses, especially for large proteins and macromolecular assemblies. Selective labelling of proteins with stable isotopes can greatly simplify spectra, as one can focus on labelled residues or segments of interest. Employing chemical biology tools for modifying and isotopically labelling proteins with atomic precision provides access to unique protein samples for structural biology and spectroscopy. Here, we review site-specific and segmental isotope labelling methods that are employed in combination with chemical and enzymatic tools to access posttranslationally modified proteins. We discuss illustrative examples in which these methods have been used to facilitate spectroscopic studies of posttranslationally modified proteins, providing new insights into biology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA