RESUMEN
BACKGROUND: More than 95% of cervical cancers and their precancerous lesions are caused by human papillomavirus (HPV). Cell-free (cf) HPV DNA detection in blood samples may serve as a monitoring tool for cervical cancer. METHODS: In our methodological study, an HPV panel for simultaneous detection of 24 types using mass spectrometry-based analysis was developed for liquid biopsy approaches and tested on HPV positive cell lines, plasmid controls, and cervical high-grade squamous intraepithelial lesions (HSIL) in positive smear samples (n = 52). It was validated in cfDNA blood samples (n = 40) of cervical cancer patients. RESULTS: The HPV panel showed proficient results in cell lines and viral plasmids with a limit of detection of 1 IU (international units)/µL for HPV16/18 and 10GE/µL for HPV11/31/33/39/45/51/52/58/59 and a specificity of 100% for the tested HPV types. In cervical smear samples, HPV DNA was detected with a sensitivity of 98.14%. The overall agreement between the new HPV panel and clinical records was 97.2% (κ = 0.84). In cervical cancer cfDNA, 26/40 (65.0%) tested positive for any HPV type, with most infections due to hrHPV (24/26). HPV positive samples were found in all FIGO stages, with the highest positivity ratio in FIGO III and IV. Even the lowest stage, FIGO I, had 12/23 (52.2%) patients with a positive HPV plasma status. CONCLUSIONS: This proof-of-concept paper shows that the described assay produces reliable results for detecting HPV types in a multiplex mass spectrometry-based assay in cervical smear and cfDNA with high specificity and sensitivity in both cohorts. The assay shows potential for liquid biopsy-based applications in monitoring cervical cancer progression.