Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 163(6): 1527-38, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26638077

RESUMEN

The killifish Nothobranchius furzeri is the shortest-lived vertebrate that can be bred in the laboratory. Its rapid growth, early sexual maturation, fast aging, and arrested embryonic development (diapause) make it an attractive model organism in biomedical research. Here, we report a draft sequence of its genome that allowed us to uncover an intra-species Y chromosome polymorphism representing-in real time-different stages of sex chromosome formation that display features of early mammalian XY evolution "in action." Our data suggest that gdf6Y, encoding a TGF-ß family growth factor, is the master sex-determining gene in N. furzeri. Moreover, we observed genomic clustering of aging-related genes, identified genes under positive selection, and revealed significant similarities of gene expression profiles between diapause and aging, particularly for genes controlling cell cycle and translation. The annotated genome sequence is provided as an online resource (http://www.nothobranchius.info/NFINgb).


Asunto(s)
Evolución Biológica , Peces Killi/genética , Cromosomas Sexuales , Envejecimiento , Animales , Femenino , Genoma , Peces Killi/fisiología , Masculino , Datos de Secuencia Molecular , Procesos de Determinación del Sexo
2.
Nature ; 590(7845): 284-289, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33461212

RESUMEN

Lungfishes belong to lobe-fined fish (Sarcopterygii) that, in the Devonian period, 'conquered' the land and ultimately gave rise to all land vertebrates, including humans1-3. Here we determine the chromosome-quality genome of the Australian lungfish (Neoceratodus forsteri), which is known to have the largest genome of any animal. The vast size of this genome, which is about 14× larger than that of humans, is attributable mostly to huge intergenic regions and introns with high repeat content (around 90%), the components of which resemble those of tetrapods (comprising mainly long interspersed nuclear elements) more than they do those of ray-finned fish. The lungfish genome continues to expand independently (its transposable elements are still active), through mechanisms different to those of the enormous genomes of salamanders. The 17 fully assembled lungfish macrochromosomes maintain synteny to other vertebrate chromosomes, and all microchromosomes maintain conserved ancient homology with the ancestral vertebrate karyotype. Our phylogenomic analyses confirm previous reports that lungfish occupy a key evolutionary position as the closest living relatives to tetrapods4,5, underscoring the importance of lungfish for understanding innovations associated with terrestrialization. Lungfish preadaptations to living on land include the gain of limb-like expression in developmental genes such as hoxc13 and sall1 in their lobed fins. Increased rates of evolution and the duplication of genes associated with obligate air-breathing, such as lung surfactants and the expansion of odorant receptor gene families (which encode proteins involved in detecting airborne odours), contribute to the tetrapod-like biology of lungfishes. These findings advance our understanding of this major transition during vertebrate evolution.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Biológica , Peces/genética , Marcha/genética , Genoma/genética , Pulmón , Vertebrados/genética , Aire , Aletas de Animales/anatomía & histología , Animales , Teorema de Bayes , Cromosomas/genética , Extremidades/anatomía & histología , Femenino , Peces/fisiología , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox/genética , Genómica , Humanos , Elementos de Nucleótido Esparcido Largo/genética , Pulmón/anatomía & histología , Pulmón/fisiología , Ratones , Anotación de Secuencia Molecular , Filogenia , Respiración , Olfato/fisiología , Sintenía , Vertebrados/fisiología , Órgano Vomeronasal/anatomía & histología
3.
Genome Res ; 33(4): 557-571, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37147111

RESUMEN

Because of diverged adaptative phenotypes, fish species of the genus Xiphophorus have contributed to a wide range of research for a century. Existing Xiphophorus genome assemblies are not at the chromosomal level and are prone to sequence gaps, thus hindering advancement of the intra- and inter-species differences for evolutionary, comparative, and translational biomedical studies. Herein, we assembled high-quality chromosome-level genome assemblies for three distantly related Xiphophorus species, namely, X. maculatus, X. couchianus, and X. hellerii Our overall goal is to precisely assess microevolutionary processes in the clade to ascertain molecular events that led to the divergence of the Xiphophorus species and to progress understanding of genetic incompatibility to disease. In particular, we measured intra- and inter-species divergence and assessed gene expression dysregulation in reciprocal interspecies hybrids among the three species. We found expanded gene families and positively selected genes associated with live bearing, a special mode of reproduction. We also found positively selected gene families are significantly enriched in nonpolymorphic transposable elements, suggesting the dispersal of these nonpolymorphic transposable elements has accompanied the evolution of the genes, possibly by incorporating new regulatory elements in support of the Britten-Davidson hypothesis. We characterized inter-specific polymorphisms, structural variants, and polymorphic transposable element insertions and assessed their association to interspecies hybridization-induced gene expression dysregulation related to specific disease states in humans.


Asunto(s)
Ciprinodontiformes , Elementos Transponibles de ADN , Animales , Humanos , Elementos Transponibles de ADN/genética , Epistasis Genética , Hibridación Genética , Ciprinodontiformes/genética , Ciprinodontiformes/metabolismo
4.
Mol Biol Evol ; 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35980103

RESUMEN

The formation of new genes is a major source of organism evolutionary innovation. Beyond their mutational effects, transposable elements can be co-opted by host genomes to form different types of sequences including novel genes, through a mechanism named molecular domestication.We report the formation of four genes through molecular domestication of Harbinger transposons, three in a common ancestor of jawed vertebrates about 500 million years ago and one in sarcopterygians approx. 430 million years ago. Additionally, one processed pseudogene arose approx. 60 million years ago in simians. In zebrafish, Harbinger-derived genes are expressed during early development but also in adult tissues, and predominantly co-expressed in male brain. In human, expression was detected in multiple organs, with major expression in the brain particularly during fetal development. We used CRISPR/Cas9 with direct gene knock-out in the F0 generation and the morpholino antisense oligonucleotide knock-down technique to study in zebrafish the function of one of these genes called MSANTD2, which has been suggested to be associated to neuro-developmental diseases such as autism spectrum disorders and schizophrenia in human. MSANTD2 inactivation led to developmental delays including tail and nervous system malformation at one day post fertilization. Affected embryos showed dead cell accumulation, major anatomical defects characterized by impaired brain ventricle formation and alterations in expression of some characteristic genes involved in vertebrate nervous system development. Hence, the characterization of MSANTD2 and other Harbinger-derived genes might contribute to a better understanding of the genetic innovations having driven the early evolution of the vertebrate nervous system.

5.
Mol Biol Evol ; 38(2): 589-605, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-32986833

RESUMEN

Evolution sometimes proceeds by loss, especially when structures and genes become dispensable after an environmental shift relaxes functional constraints. Subterranean vertebrates are outstanding models to analyze this process, and gene decay can serve as a readout. We sought to understand some general principles on the extent and tempo of the decay of genes involved in vision, circadian clock, and pigmentation in cavefishes. The analysis of the genomes of two Cuban species belonging to the genus Lucifuga provided evidence for the largest loss of eye-specific genes and nonvisual opsin genes reported so far in cavefishes. Comparisons with a recently evolved cave population of Astyanax mexicanus and three species belonging to the Chinese tetraploid genus Sinocyclocheilus revealed the combined effects of the level of eye regression, time, and genome ploidy on eye-specific gene pseudogenization. The limited extent of gene decay in all these cavefishes and the very small number of loss-of-function mutations per pseudogene suggest that their eye degeneration may not be very ancient, ranging from early to late Pleistocene. This is in sharp contrast with the identification of several vision genes carrying many loss-of-function mutations in ancient fossorial mammals, further suggesting that blind fishes cannot thrive more than a few million years in cave ecosystems.


Asunto(s)
Relojes Circadianos/genética , Peces/genética , Mutación con Pérdida de Función , Topos/genética , Pigmentación/genética , Visión Ocular/genética , Animales , Cuevas , Seudogenes , Selección Genética , Pez Cebra
6.
Nucleic Acids Res ; 48(D1): D668-D675, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31680137

RESUMEN

ANISEED (https://www.aniseed.cnrs.fr) is the main model organism database for the worldwide community of scientists working on tunicates, the vertebrate sister-group. Information provided for each species includes functionally-annotated gene and transcript models with orthology relationships within tunicates, and with echinoderms, cephalochordates and vertebrates. Beyond genes the system describes other genetic elements, including repeated elements and cis-regulatory modules. Gene expression profiles for several thousand genes are formalized in both wild-type and experimentally-manipulated conditions, using formal anatomical ontologies. These data can be explored through three complementary types of browsers, each offering a different view-point. A developmental browser summarizes the information in a gene- or territory-centric manner. Advanced genomic browsers integrate the genetic features surrounding genes or gene sets within a species. A Genomicus synteny browser explores the conservation of local gene order across deuterostome. This new release covers an extended taxonomic range of 14 species, including for the first time a non-ascidian species, the appendicularian Oikopleura dioica. Functional annotations, provided for each species, were enhanced through a combination of manual curation of gene models and the development of an improved orthology detection pipeline. Finally, gene expression profiles and anatomical territories can be explored in 4D online through the newly developed Morphonet morphogenetic browser.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica , Genoma , Programas Informáticos , Urocordados/genética , Animales , Sitios de Unión , Cefalocordados/genética , Gráficos por Computador , Simulación por Computador , Equinodermos/genética , Evolución Molecular , Orden Génico , Genómica , Hibridación in Situ , Internet , Anotación de Secuencia Molecular , Filogenia , Lenguajes de Programación , RNA-Seq , Sintenía , Interfaz Usuario-Computador , Vertebrados/genética
7.
Nucleic Acids Res ; 46(D1): D718-D725, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29149270

RESUMEN

ANISEED (www.aniseed.cnrs.fr) is the main model organism database for tunicates, the sister-group of vertebrates. This release gives access to annotated genomes, gene expression patterns, and anatomical descriptions for nine ascidian species. It provides increased integration with external molecular and taxonomy databases, better support for epigenomics datasets, in particular RNA-seq, ChIP-seq and SELEX-seq, and features novel interactive interfaces for existing and novel datatypes. In particular, the cross-species navigation and comparison is enhanced through a novel taxonomy section describing each represented species and through the implementation of interactive phylogenetic gene trees for 60% of tunicate genes. The gene expression section displays the results of RNA-seq experiments for the three major model species of solitary ascidians. Gene expression is controlled by the binding of transcription factors to cis-regulatory sequences. A high-resolution description of the DNA-binding specificity for 131 Ciona robusta (formerly C. intestinalis type A) transcription factors by SELEX-seq is provided and used to map candidate binding sites across the Ciona robusta and Phallusia mammillata genomes. Finally, use of a WashU Epigenome browser enhances genome navigation, while a Genomicus server was set up to explore microsynteny relationships within tunicates and with vertebrates, Amphioxus, echinoderms and hemichordates.


Asunto(s)
Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Genoma , Urocordados/genética , Animales , Evolución Biológica , Ciona intestinalis/genética , ADN/metabolismo , Minería de Datos , Evolución Molecular , Expresión Génica , Ontología de Genes , Internet , Anotación de Secuencia Molecular , Filogenia , Unión Proteica , Especificidad de la Especie , Factores de Transcripción/metabolismo , Transcripción Genética , Vertebrados/genética , Navegador Web
8.
Biophys J ; 114(10): 2308-2316, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29580552

RESUMEN

Nucleosome-depleted regions around which nucleosomes order following the "statistical" positioning scenario were recently shown to be encoded in the DNA sequence in human. This intrinsic nucleosomal ordering strongly correlates with oscillations in the local GC content as well as with the interspecies and intraspecies mutation profiles, revealing the existence of both positive and negative selection. In this letter, we show that these predicted nucleosome inhibitory energy barriers (NIEBs) with compacted neighboring nucleosomes are indeed ubiquitous to all vertebrates tested. These 1 kb-sized chromatin patterns are widely distributed along vertebrate chromosomes, overall covering more than a third of the genome. We have previously observed in human deviations from neutral evolution at these genome-wide distributed regions, which we interpreted as a possible indication of the selection of an open, accessible, and dynamic nucleosomal array to constitutively facilitate the epigenetic regulation of nuclear functions in a cell-type-specific manner. As a first, very appealing observation supporting this hypothesis, we report evidence of a strong association between NIEB borders and the poly(A) tails of Alu sequences in human. These results suggest that NIEBs provide adequate chromatin patterns favorable to the integration of Alu retrotransposons and, more generally to various transposable elements in the genomes of primates and other vertebrates.


Asunto(s)
ADN/genética , Nucleosomas/genética , Vertebrados , Animales , Secuencia de Bases , Humanos
9.
BMC Genomics ; 19(1): 522, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29976163

RESUMEN

BACKGROUND: Human Endogenous Retroviruses (HERVs) and Mammalian apparent LTR-retrotransposons (MaLRs) represent the 8% of our genome and are distributed among our 46 chromosomes. These LTR-retrotransposons are thought to be essentially silent except in cancer, autoimmunity and placental development. Their Long Terminal Repeats (LTRs) constitute putative promoter or polyA regulatory sequences. In this study, we used a recently described high-density microarray which can be used to study HERV/MaLR transcriptome including 353,994 HERV/MaLR loci and 1559 immunity-related genes. RESULTS: We described, for the first time, the HERV transcriptome in peripheral blood mononuclear cells (PBMCs) using a cellular model mimicking inflammatory response and monocyte anergy observed after septic shock. About 5.6% of the HERV/MaLR repertoire is transcribed in PBMCs. Roughly one-tenth [5.7-13.1%] of LTRs exhibit a putative constitutive promoter or polyA function while one-quarter [19.5-27.6%] may shift from silent to active. Evidence was given that some HERVs/MaLRs and genes may share similar regulation control under lipopolysaccharide (LPS) stimulation conditions. Stimulus-dependent response confirms that HERV expression is tightly regulated in PBMCs. Altogether, these observations make it possible to integrate 62 HERVs/MaLRs and 26 genes in 11 canonical pathways and suggest a link between HERV expression and immune response. The transcriptional modulation of HERVs located close to genes such as OAS2/3 and IFI44/IFI44L or at a great distance from genes was discussed. CONCLUSION: This microarray-based approach revealed the expression of about 47,466 distinct HERV loci and identified 951 putative promoter LTRs and 744 putative polyA LTRs in PBMCs. HERV/MaLR expression was shown to be tightly modulated under several stimuli including high-dose and low-dose LPS and Interferon-γ (IFN-γ). HERV incorporation at the crossroads of immune response pathways paves the way for further functional studies and analyses of the HERV transcriptome in altered immune responses in vivo such as in sepsis.


Asunto(s)
Leucocitos Mononucleares/efectos de los fármacos , Lipopolisacáridos/farmacología , Retroelementos/genética , Secuencias Repetidas Terminales/genética , Transcriptoma/efectos de los fármacos , Biología Computacional , Retrovirus Endógenos/genética , Humanos , Sistema Inmunológico/efectos de los fármacos , Sistema Inmunológico/metabolismo , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo
10.
FASEB J ; 31(2): 436-446, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27799346

RESUMEN

P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are small, noncoding RNAs known for silencing transposable elements (TEs) in the germline of animals. Most genomes host TEs, which are notorious for mobilizing themselves and endangering survival of the host if not controlled. By silencing TEs in the germline, piRNAs prevent harmful mutations from being passed on to the next generation. How piRNAs are generated and how they silence TEs were the focus of researchers ever since their discovery. Now a spate of recent papers are beginning to tell us that piRNAs can play roles beyond TE silencing and are involved in diverse cellular processes from mRNA regulation to development or genome rearrangement. In this review, we discuss some of these recently reported roles. Data on these new roles are often rudimentary, and the involvement of piRNAs in these processes is yet to be definitely established. What is interesting is that the reports are on animals widely separated on the phylogenetic tree of life and that piRNAs were also found outside the gonadal tissues. Some of these piRNAs map to TE sequences, prompting us to hypothesize that genomes may have co-opted the TE-derived piRNA system for their own regulation.-Sarkar, A., Volff, J.-N., Vaury, C. piRNAs and their diverse roles: a transposable element-driven tactic for gene regulation?


Asunto(s)
Elementos Transponibles de ADN , Regulación de la Expresión Génica/fisiología , ARN Interferente Pequeño/metabolismo , Animales , Interferencia de ARN , ARN Interferente Pequeño/genética
11.
Chromosoma ; 125(3): 355-60, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26968413

RESUMEN

The synaptonemal complex (SC), a key structure of meiosis that assembles during prophase I, has been initially described 60 years ago. Since then, the structure has been described in many sexually reproducing organisms. However, the SC protein components were characterized in only few model organisms. Surprisingly, they lacked an apparent evolutionary relationship despite the conserved structural organization of the SC. For better understanding of this obvious discrepancy, the evolutionary history of the SC and its individual components has been investigated in Metazoa in detail. The results are consistent with the notion of a single origin of the metazoan SC and provide evidence for a dynamic evolutionary history of the SC components. In this mini review, we recapitulate and discuss new insights into metazoan SC evolution.


Asunto(s)
Evolución Molecular , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo , Animales , Humanos
12.
J Exp Zool B Mol Dev Evol ; 328(7): 629-637, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28921831

RESUMEN

Teleost fish have been shown to contain many superfamilies of transposable elements (TEs) that are absent from most tetrapod genomes. Since theories predict an increase in TE activity following polyploidization, such diversity might be linked to the 3R whole-genome duplication that occurred approximately 300 million years ago before the teleost radiation. To test this hypothesis, we have analyzed the genome of the spotted gar Lepisosteus oculatus, which diverged from the teleost lineage before the 3R duplication. Our results indicate that TE diversity and copy numbers are similar in gar and teleost genomes, suggesting that TE diversity was ancestral and not linked to the 3R whole-genome duplication. We propose that about 25 distinct superfamilies of TEs were present in the last ancestor of gars and teleost fish about 300 million years ago in the ray-finned fish lineage.


Asunto(s)
Evolución Biológica , Elementos Transponibles de ADN/genética , Peces/genética , Duplicación de Gen , Variación Genética , Genoma , Animales
13.
Nucleic Acids Res ; 43(7): 3701-11, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25779047

RESUMEN

Selective pressure to maintain small genome size implies control of transposable elements, and most old classes of retrotransposons are indeed absent from the very compact genome of the tunicate Oikopleura dioica. Nonetheless, two families of retrotransposons are present, including the Tor elements. The gene organization within Tor elements is similar to that of LTR retrotransposons and retroviruses. In addition to gag and pol, many Tor elements carry a third gene encoding viral envelope-like proteins (Env) that may mediate infection. We show that the Tor family contains distinct classes of elements. In some classes, env mRNA is transcribed from the 5'LTR as in retroviruses. In others, env is transcribed from an additional promoter located downstream of the 5'LTR. Tor Env proteins are membrane-associated glycoproteins which exhibit some features of viral membrane fusion proteins. Whereas some elements are expressed in the adult testis, many others are specifically expressed in embryonic somatic cells adjacent to primordial germ cells. Such embryonic expression depends on determinants present in the Tor elements and not on their surrounding genomic environment. Our study shows that unusual modes of transcription and expression close to the germline may contribute to the proliferation of Tor elements.


Asunto(s)
Retrovirus Endógenos/genética , Regulación del Desarrollo de la Expresión Génica , Células Germinativas , ARN/genética , Urocordados/genética , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Datos de Secuencia Molecular , Polimorfismo Genético , Regiones Promotoras Genéticas , Homología de Secuencia de Aminoácido , Proteínas del Envoltorio Viral/química
14.
BMC Genomics ; 17: 37, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26742787

RESUMEN

BACKGROUND: Xiphophorus fishes are represented by 26 live-bearing species of tropical fish that express many attributes (e.g., viviparity, genetic and phenotypic variation, ecological adaptation, varied sexual developmental mechanisms, ability to produce fertile interspecies hybrids) that have made attractive research models for over 85 years. Use of various interspecies hybrids to investigate the genetics underlying spontaneous and induced tumorigenesis has resulted in the development and maintenance of pedigreed Xiphophorus lines specifically bred for research. The recent availability of the X. maculatus reference genome assembly now provides unprecedented opportunities for novel and exciting comparative research studies among Xiphophorus species. RESULTS: We present sequencing, assembly and annotation of two new genomes representing Xiphophorus couchianus and Xiphophorus hellerii. The final X. couchianus and X. hellerii assemblies have total sizes of 708 Mb and 734 Mb and correspond to 98 % and 102 % of the X. maculatus Jp 163 A genome size, respectively. The rates of single nucleotide change range from 1 per 52 bp to 1 per 69 bp among the three genomes and the impact of putatively damaging variants are presented. In addition, a survey of transposable elements allowed us to deduce an ancestral TE landscape, uncovered potential active TEs and document a recent burst of TEs during evolution of this genus. CONCLUSIONS: Two new Xiphophorus genomes and their corresponding transcriptomes were efficiently assembled, the former using a novel guided assembly approach. Three assembled genome sequences within this single vertebrate order of new world live-bearing fishes will accelerate our understanding of relationship between environmental adaptation and genome evolution. In addition, these genome resources provide capability to determine allele specific gene regulation among interspecies hybrids produced by crossing any of the three species that are known to produce progeny predisposed to tumor development.


Asunto(s)
Ciprinodontiformes/genética , Variación Genética , Genoma , Transcriptoma/genética , Animales , Regulación de la Expresión Génica , Genómica , Especificidad de la Especie
15.
Chromosome Res ; 23(3): 545-60, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26429387

RESUMEN

In many organisms, the sex chromosome pair can be recognized due to heteromorphy; the Y and W chromosomes have often lost many genes due to the absence of recombination during meiosis and are frequently heterochromatic. Repetitive sequences are found at a high proportion on such heterochromatic sex chromosomes and the evolution and emergence of sex chromosomes has been connected to the dynamics of repeats and transposable elements. With an amazing plasticity of sex determination mechanisms and numerous instances of independent emergence of novel sex chromosomes, fish represent an excellent lineage to investigate the early stages of sex chromosome differentiation, where sex chromosomes often are homomorphic and not heterochromatic. We have analyzed the composition, distribution, and relative age of TEs from available sex chromosome sequences of seven teleost fish. We observed recent bursts of TEs and simple repeat accumulations around young sex determination loci. More strikingly, we detected transposable element (TE) amplifications not only on the sex determination regions of the Y and W sex chromosomes, but also on the corresponding regions of the X and Z chromosomes. In one species, we also clearly demonstrated that the observed TE-rich sex determination locus originated from a TE-poor genomic region, strengthening the link between TE accumulation and emergence of the sex determination locus. Altogether, our results highlight the role of TEs in the initial steps of differentiation and evolution of sex chromosomes.


Asunto(s)
Elementos Transponibles de ADN , Evolución Molecular , Peces/genética , Cromosomas Sexuales , Animales , Mapeo Cromosómico , Conjuntos de Datos como Asunto , Variación Genética , Genoma , Genómica , Procesos de Determinación del Sexo/genética
16.
Chromosome Res ; 23(3): 505-31, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26395902

RESUMEN

Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.


Asunto(s)
Elementos Transponibles de ADN , Evolución Molecular , Variación Genética , Genoma , Vertebrados/genética , Animales , Femenino , Regulación de la Expresión Génica , Reordenamiento Génico , Redes Reguladoras de Genes , Transferencia de Gen Horizontal , Genómica/métodos , Humanos , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta/genética , Placenta/metabolismo , Embarazo , Regiones Promotoras Genéticas , ARN no Traducido/química , ARN no Traducido/genética , Secuencias Reguladoras de Ácidos Nucleicos , Retroelementos , Factores de Transcripción/metabolismo , Transducción Genética , Vertebrados/metabolismo
17.
Genesis ; 53(1): 1-14, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25220678

RESUMEN

Tunicates are invertebrate members of the chordate phylum, and are considered to be the sister group of vertebrates. Tunicates are composed of ascidians, thaliaceans, and appendicularians. With the advent of inexpensive high-throughput sequencing, the number of sequenced tunicate genomes is expected to rise sharply within the coming years. To facilitate comparative genomics within the tunicates, and between tunicates and vertebrates, standardized rules for the nomenclature of tunicate genetic elements need to be established. Here we propose a set of nomenclature rules, consensual within the community, for predicted genes, pseudogenes, transcripts, operons, transcriptional cis-regulatory regions, transposable elements, and transgenic constructs. In addition, the document proposes guidelines for naming transgenic and mutant lines.


Asunto(s)
Elementos sin Sentido (Genética) , Genoma , Urocordados/clasificación , Urocordados/genética , Animales , Mapeo Cromosómico , Genes Sobrepuestos , Sitios Genéticos , Genómica , Guías como Asunto , Filogenia , Terminología como Asunto , Transcripción Genética
18.
Proc Natl Acad Sci U S A ; 109(41): 16588-93, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-23012415

RESUMEN

The synaptonemal complex (SC) is a key structure of meiosis, mediating the stable pairing (synapsis) of homologous chromosomes during prophase I. Its remarkable tripartite structure is evolutionarily well conserved and can be found in almost all sexually reproducing organisms. However, comparison of the different SC protein components in the common meiosis model organisms Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealed no sequence homology. This discrepancy challenged the hypothesis that the SC arose only once in evolution. To pursue this matter we focused on the evolution of SYCP1 and SYCP3, the two major structural SC proteins of mammals. Remarkably, our comparative bioinformatic and expression studies revealed that SYCP1 and SYCP3 are also components of the SC in the basal metazoan Hydra. In contrast to previous assumptions, we therefore conclude that SYCP1 and SYCP3 form monophyletic groups of orthologous proteins across metazoans.


Asunto(s)
Hydra/genética , Meiosis/genética , Proteínas Nucleares/genética , Complejo Sinaptonémico/genética , Secuencia de Aminoácidos , Animales , Western Blotting , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Proteínas de Unión al ADN , Expresión Génica , Hydra/metabolismo , Inmunohistoquímica , Hibridación in Situ , Microscopía Electrónica , Datos de Secuencia Molecular , Proteínas Nucleares/clasificación , Proteínas Nucleares/metabolismo , Filogenia , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Complejo Sinaptonémico/metabolismo , Complejo Sinaptonémico/ultraestructura
19.
J Exp Zool B Mol Dev Evol ; 322(6): 322-33, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23908136

RESUMEN

The apparent morphological stasis in the lineage of the coelacanth, which has been called a "living fossil" by many, has been suggested to be causally related to a slow evolution of its genome, with strongly reduced activity of transposable elements (TEs). Analysis of the African coelacanth showed that at least 25% of its genome is constituted of transposable elements including retrotransposons, endogenous retroviruses and DNA transposons, with a strong predominance of non-Long Terminal Repeat (non-LTR) retrotransposons. The coelacanth genome has been shaped by four major general bursts of transposition during evolution, with major contributions of LINE1, LINE2, CR1, and Deu non-LTR retrotransposons. Many transposable elements are expressed in different tissues and might be active. The number of TE families in coelacanth, but also in lungfish, is lower than in teleost fish, but is higher than in chicken and human. This observation is in agreement with the hypothesis of a sequential elimination of many TE families in the sarcopterygian lineage during evolution. Taken together, our analysis indicates that the coelacanth contains more TE families than birds and mammals, and that these elements have been active during the evolution of the coelacanth lineage. Hence, at the level of transposable element activity, the coelacanth genome does not appear to evolve particularly slowly.


Asunto(s)
Elementos Transponibles de ADN/genética , Evolución Molecular , Peces/genética , Genoma , Retroelementos/genética , Animales , Evolución Biológica , Filogenia , Secuencias Repetidas Terminales
20.
J Exp Zool B Mol Dev Evol ; 322(6): 379-89, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24038780

RESUMEN

The morphological stasis of coelacanths has long suggested a slow evolutionary rate. General genomic stasis might also imply a decrease of transposable elements activity. To evaluate the potential activity of transposable elements (TEs) in "living fossil" species, transcriptomic data of Latimeria chalumnae and its Indonesian congener Latimeria menadoensis were compared through the RNA-sequencing mapping procedures in three different organs (liver, testis, and muscle). The analysis of coelacanth transcriptomes highlights a significant percentage of transcribed TEs in both species. Major contributors are LINE retrotransposons, especially from the CR1 family. Furthermore, some particular elements such as a LF-SINE and a LINE2 sequences seem to be more expressed than other elements. The amount of TEs expressed in testis suggests possible transposition burst in incoming generations. Moreover, significant amount of TEs in liver and muscle transcriptomes were also observed. Analyses of elements displaying marked organ-specific expression gave us the opportunity to highlight exaptation cases, that is, the recruitment of TEs as new cellular genes, but also to identify a new Latimeria-specific family of Short Interspersed Nuclear Elements called CoeG-SINEs. Overall, transcriptome results do not seem to be in line with a slow-evolving genome with poor TE activity.


Asunto(s)
Elementos Transponibles de ADN/genética , Peces/genética , Análisis de Secuencia de ARN , Transcriptoma , Animales , Secuencia de Bases , Evolución Biológica , Evolución Molecular , Genoma , Hígado , Masculino , Músculos , Filogenia , Retroelementos/genética , Elementos de Nucleótido Esparcido Corto , Especificidad de la Especie , Testículo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA