Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
PLoS Pathog ; 20(4): e1011980, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38662774

RESUMEN

Thousands of endoparasitoid wasp species in the families Braconidae and Ichneumonidae harbor "domesticated endogenous viruses" (DEVs) in their genomes. This study focuses on ichneumonid DEVs, named ichnoviruses (IVs). Large quantities of DNA-containing IV virions are produced in ovary calyx cells during the pupal and adult stages of female wasps. Females parasitize host insects by injecting eggs and virions into the body cavity. After injection, virions rapidly infect host cells which is followed by expression of IV genes that promote the successful development of wasp offspring. IV genomes consist of two components: proviral segment loci that serve as templates for circular dsDNAs that are packaged into capsids, and genes from an ancestral virus that produce virions. In this study, we generated a chromosome-scale genome assembly for Hyposoter didymator that harbors H. didymator ichnovirus (HdIV). We identified a total of 67 HdIV loci that are amplified in calyx cells during the wasp pupal stage. We then focused on an HdIV gene, U16, which is transcribed in calyx cells during the initial stages of replication. Sequence analysis indicated that U16 contains a conserved domain in primases from select other viruses. Knockdown of U16 by RNA interference inhibited virion morphogenesis in calyx cells. Genome-wide analysis indicated U16 knockdown also inhibited amplification of HdIV loci in calyx cells. Altogether, our results identified several previously unknown HdIV loci, demonstrated that all HdIV loci are amplified in calyx cells during the pupal stage, and showed that U16 is required for amplification and virion morphogenesis.


Asunto(s)
Replicación Viral , Avispas , Animales , Avispas/virología , Avispas/genética , Replicación Viral/genética , Genoma Viral , Femenino , Genes Virales , Proteínas Virales/genética , Proteínas Virales/metabolismo , Polydnaviridae/genética , Virión/genética
2.
Mol Biol Evol ; 40(3)2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36881879

RESUMEN

Increasing numbers of horizontal transfer (HT) of genes and transposable elements are reported in insects. Yet the mechanisms underlying these transfers remain unknown. Here we first quantify and characterize the patterns of chromosomal integration of the polydnavirus (PDV) encoded by the Campopleginae Hyposoter didymator parasitoid wasp (HdIV) in somatic cells of parasitized fall armyworm (Spodoptera frugiperda). PDVs are domesticated viruses injected by wasps together with their eggs into their hosts in order to facilitate the development of wasp larvae. We found that six HdIV DNA circles integrate into the genome of host somatic cells. Each host haploid genome suffers between 23 and 40 integration events (IEs) on average 72 h post-parasitism. Almost all IEs are mediated by DNA double-strand breaks occurring in the host integration motif (HIM) of HdIV circles. We show that despite their independent evolutionary origins, PDV from both Campopleginae and Braconidae wasps use remarkably similar mechanisms for chromosomal integration. Next, our similarity search performed on 775 genomes reveals that PDVs of both Campopleginae and Braconidae wasps have recurrently colonized the germline of dozens of lepidopteran species through the same mechanisms they use to integrate into somatic host chromosomes during parasitism. We found evidence of HIM-mediated HT of PDV DNA circles in no less than 124 species belonging to 15 lepidopteran families. Thus, this mechanism underlies a major route of HT of genetic material from wasps to lepidopterans with likely important consequences on lepidopterans.


Asunto(s)
Polydnaviridae , Avispas , Animales , Polydnaviridae/genética , Avispas/genética , Larva/genética , Cromosomas
3.
J Virol ; 96(13): e0052422, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35678601

RESUMEN

Nudiviruses are large double-stranded DNA viruses related to baculoviruses known to be endogenized in the genomes of certain parasitic wasp species. These wasp-virus associations allow the production of viral particles or virus-like particles that ensure wasp parasitism success within lepidopteran hosts. Venturia canescens is an ichneumonid wasp belonging to the Campopleginae subfamily that has endogenized nudivirus genes belonging to the Alphanudivirus genus to produce "virus-like particles" (Venturia canescens virus-like particles [VcVLPs]), which package proteic virulence factors. The main aim of this study was to determine whether alphanudivirus gene functions have been conserved following endogenization. The expression dynamics of alphanudivirus genes was monitored by a high throughput transcriptional approach, and the functional role of lef-4 and lef-8 genes predicted to encode viral RNA polymerase components was investigated by RNA interference. As described for baculovirus infections and for endogenized nudivirus genes in braconid wasp species producing bracoviruses, a transcriptional cascade involving early and late expressed alphanudivirus genes could be observed. The expression of lef-4 and lef-8 was also shown to be required for the expression of alphanudivirus late genes allowing correct particle formation. Together with previous literature, the results show that endogenization of nudiviruses in parasitoid wasps has repeatedly led to the conservation of the viral RNA polymerase function, allowing the production of viruses or viral-like particles that differ in composition but enable wasp parasitic success. IMPORTANCE This study shows that endogenization of a nudivirus genome in a Campopleginae parasitoid wasp has led to the conservation, as for endogenized nudiviruses in braconid parasitoid wasps, of the viral RNA polymerase function, required for the transcription of genes encoding viral particles involved in wasp parasitism success. We also showed for the first time that RNA interference (RNAi) can be successfully used to downregulate gene expression in this species, a model in behavioral ecology. This opens the opportunity to investigate the function of genes involved in other traits important for parasitism success, such as reproductive strategies and host choice. Fundamental data acquired on gene function in Venturia canescens are likely to be transferable to other parasitoid wasp species used in biological control programs. This study also renders possible the investigation of other nudivirus gene functions, for which little data are available.


Asunto(s)
Nudiviridae , Transcripción Viral , Avispas , Animales , ADN Viral/genética , Nudiviridae/genética , Proteinas del Complejo de Replicasa Viral , Avispas/virología
4.
PLoS Pathog ; 15(12): e1008210, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31834912

RESUMEN

There are many documented examples of viral genes retained in the genomes of multicellular organisms that may in some cases bring new beneficial functions to the receivers. The ability of certain ichneumonid parasitic wasps to produce virus-derived particles, the so-called ichnoviruses (IVs), not only results from the capture and domestication of single viral genes but of almost entire ancestral virus genome(s). Indeed, following integration into wasp chromosomal DNA, the putative and still undetermined IV ancestor(s) evolved into encoding a 'virulence gene delivery vehicle' that is now required for successful infestation of wasp hosts. Several putative viral genes, which are clustered in distinct regions of wasp genomes referred to as IVSPERs (Ichnovirus Structural Protein Encoding Regions), have been assumed to be involved in virus-derived particles morphogenesis, but this question has not been previously functionally addressed. In the present study, we have successfully combined RNA interference and transmission electron microscopy to specifically identify IVSPER genes that are responsible for the morphogenesis and trafficking of the virus-derived particles in ovarian cells of the ichneumonid wasp Hyposoter didymator. We suggest that ancestral viral genes retained within the genomes of certain ichneumonid parasitoids possess conserved functions which were domesticated for the purpose of assembling viral vectors for the delivery of virulence genes to parasitized host animals.


Asunto(s)
Virión/fisiología , Avispas/genética , Avispas/virología , Animales , Genes Virales/genética , Polydnaviridae/genética , Interferencia de ARN
5.
Mol Ecol ; 30(18): 4567-4583, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34245612

RESUMEN

There is increasing awareness that interactions between plants and insects can be mediated by microbial symbionts. Nonetheless, evidence showing that symbionts associated with organisms beyond the second trophic level affect plant-insect interactions are restricted to a few cases belonging to parasitoid-associated bracoviruses. Insect parasitoids harbour a wide array of symbionts which, like bracoviruses, can be injected into their herbivorous hosts to manipulate their physiology and behaviour. Yet, the function of these symbionts in plant-based trophic webs remains largely overlooked. Here, we provide the first evidence of a parasitoid-associated symbiont belonging to the group of ichnoviruses which affects the strength of plant-insect interactions. A comparative proteomic analysis shows that, upon parasitoid injection of calyx fluid containing ichnovirus particles, the composition of salivary glands of caterpillars changes both qualitatively (presence of two viral-encoded proteins) and quantitatively (abundance of several caterpillar-resident enzymes, including elicitors such as glucose oxidase). In turn, plant phenotypic changes triggered by the altered composition of caterpillar oral secretions affect the performance of herbivores. Ichnovirus manipulation of plant responses to herbivory leads to benefits for their parasitoid partners in terms of reduced developmental time within the parasitized caterpillar. Interestingly, plant-mediated ichnovirus-induced effects also enhance the performances of unparasitized herbivores which in natural conditions may feed alongside parasitized ones. We discuss these findings in the context of ecological costs imposed to the plant by the viral symbiont of the parasitoid. Our results provide intriguing novel findings about the role played by carnivore-associated symbionts on plant-insect-parasitoid systems and underline the importance of placing mutualistic associations in an ecological perspective.


Asunto(s)
Polydnaviridae , Avispas , Animales , Herbivoria , Interacciones Huésped-Parásitos , Larva , Proteómica
6.
BMC Biol ; 18(1): 89, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32703219

RESUMEN

BACKGROUND: Polydnaviruses (PDVs) are mutualistic endogenous viruses inoculated by some lineages of parasitoid wasps into their hosts, where they facilitate successful wasp development. PDVs include the ichnoviruses and bracoviruses that originate from independent viral acquisitions in ichneumonid and braconid wasps respectively. PDV genomes are fully incorporated into the wasp genomes and consist of (1) genes involved in viral particle production, which derive from the viral ancestor and are not encapsidated, and (2) proviral segments harboring virulence genes, which are packaged into the viral particle. To help elucidating the mechanisms that have facilitated viral domestication in ichneumonid wasps, we analyzed the structure of the viral insertions by sequencing the whole genome of two ichnovirus-carrying wasp species, Hyposoter didymator and Campoletis sonorensis. RESULTS: Assemblies with long scaffold sizes allowed us to unravel the organization of the endogenous ichnovirus and revealed considerable dispersion of the viral loci within the wasp genomes. Proviral segments contained species-specific sets of genes and occupied distinct genomic locations in the two ichneumonid wasps. In contrast, viral machinery genes were organized in clusters showing highly conserved gene content and order, with some loci located in collinear wasp genomic regions. This genomic architecture clearly differs from the organization of PDVs in braconid wasps, in which proviral segments are clustered and viral machinery elements are more dispersed. CONCLUSIONS: The contrasting structures of the two types of ichnovirus genomic elements are consistent with their different functions: proviral segments are vehicles for virulence proteins expected to adapt according to different host defense systems, whereas the genes involved in virus particle production in the wasp are likely more stable and may reflect ancestral viral architecture. The distinct genomic architectures seen in ichnoviruses versus bracoviruses reveal different evolutionary trajectories that have led to virus domestication in the two wasp lineages.


Asunto(s)
Evolución Molecular , Genoma Viral , Interacciones Microbiota-Huesped , Polydnaviridae/genética , Avispas/virología , Animales , Especificidad de la Especie , Secuenciación Completa del Genoma
7.
Virologie (Montrouge) ; 24(2): 113-125, 2020 04 01.
Artículo en Francés | MEDLINE | ID: mdl-32540821

RESUMEN

Polydnaviruses are unique mutualistic viruses associated with thousands of parasitoid wasps. They are characterized by a segmented packaged DNA genome and are necessary for parasitic success. Virus particles are produced in the wasp ovaries from a set of "viral" sequences integrated into the wasp genome. The polydnavirus/wasp associations as observed today result from the integration of a viral genomes into the wasp genome during evolution. Recent years have been marked by the discovery of the viral ancestors of the two known types of polydnavirus, bracovirus and ichnovirus, which has helped to shed some light on the evolution of the symbiosis. Some of the viral genes have been conserved in the genome of the parasitoid, allowing the latter to produce non-replicative viral particles, that contain DNA molecules encoding essentially "virulence" genes, probably of insect origin. Thus polydnaviruses can be considered as endogenous viral elements (EVE) that have been domesticated by the wasp to become a "weapon" allowing its survival.

8.
Ecol Lett ; 21(7): 957-967, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29656523

RESUMEN

Microbial mutualistic symbiosis is increasingly recognised as a hidden driving force in the ecology of plant-insect interactions. Although plant-associated and herbivore-associated symbionts clearly affect interactions between plants and herbivores, the effects of symbionts associated with higher trophic levels has been largely overlooked. At the third-trophic level, parasitic wasps are a common group of insects that can inject symbiotic viruses (polydnaviruses) and venom into their herbivorous hosts to support parasitoid offspring development. Here, we show that such third-trophic level symbionts act in combination with venom to affect plant-mediated interactions by reducing colonisation of subsequent herbivore species. This ecological effect correlated with changes induced by polydnaviruses and venom in caterpillar salivary glands and in plant defence responses to herbivory. Because thousands of parasitoid species are associated with mutualistic symbiotic viruses in an intimate, specific relationship, our findings may represent a novel and widespread ecological phenomenon in plant-insect interactions.


Asunto(s)
Herbivoria , Interacciones Huésped-Parásitos , Avispas , Animales , Insectos , Parásitos
9.
PLoS Genet ; 11(9): e1005470, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26379286

RESUMEN

Bracoviruses are symbiotic viruses associated with tens of thousands of species of parasitic wasps that develop within the body of lepidopteran hosts and that collectively parasitize caterpillars of virtually every lepidopteran species. Viral particles are produced in the wasp ovaries and injected into host larvae with the wasp eggs. Once in the host body, the viral DNA circles enclosed in the particles integrate into lepidopteran host cell DNA. Here we show that bracovirus DNA sequences have been inserted repeatedly into lepidopteran genomes, indicating this viral DNA can also enter germline cells. The original mode of Horizontal Gene Transfer (HGT) unveiled here is based on the integrative properties of an endogenous virus that has evolved as a gene transfer agent within parasitic wasp genomes for ≈100 million years. Among the bracovirus genes thus transferred, a phylogenetic analysis indicated that those encoding C-type-lectins most likely originated from the wasp gene set, showing that a bracovirus-mediated gene flux exists between the 2 insect orders Hymenoptera and Lepidoptera. Furthermore, the acquisition of bracovirus sequences that can be expressed by Lepidoptera has resulted in the domestication of several genes that could result in adaptive advantages for the host. Indeed, functional analyses suggest that two of the acquired genes could have a protective role against a common pathogen in the field, baculovirus. From these results, we hypothesize that bracovirus-mediated HGT has played an important role in the evolutionary arms race between Lepidoptera and their pathogens.


Asunto(s)
Genes de Insecto , Lepidópteros/parasitología , Polydnaviridae/fisiología , Avispas/genética , Animales , Secuencia de Bases , ADN Viral , Datos de Secuencia Molecular , Polydnaviridae/genética , Spodoptera/genética
10.
J Virol ; 89(17): 8909-21, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26085165

RESUMEN

UNLABELLED: Polydnaviruses form a group of unconventional double-stranded DNA (dsDNA) viruses transmitted by endoparasitic wasps during egg laying into caterpillar hosts, where viral gene expression is essential to immature wasp survival. A copy of the viral genome is present in wasp chromosomes, thus ensuring vertical transmission. Polydnaviruses comprise two taxa, Bracovirus and Ichnovirus, shown to have distinct viral ancestors whose genomes were "captured" by ancestral wasps. While evidence indicates that bracoviruses derive from a nudivirus ancestor, the identity of the ichnovirus progenitor remains unknown. In addition, ichnoviruses are found in two ichneumonid wasp subfamilies, Campopleginae and Banchinae, where they constitute morphologically and genomically different virus types. To address the question of whether these two ichnovirus subgroups have distinct ancestors, we used genomic, proteomic, and transcriptomic analyses to characterize particle proteins of the banchine Glypta fumiferanae ichnovirus and the genes encoding them. Several proteins were found to be homologous to those identified earlier for campoplegine ichnoviruses while the corresponding genes were located in clusters of the wasp genome similar to those observed previously in a campoplegine wasp. However, for the first time in a polydnavirus system, these clusters also revealed sequences encoding enzymes presumed to form the replicative machinery of the progenitor virus and observed to be overexpressed in the virogenic tissue. Homology searches pointed to nucleocytoplasmic large DNA viruses as the likely source of these genes. These data, along with an analysis of the chromosomal form of five viral genome segments, provide clear evidence for the relatedness of the banchine and campoplegine ichnovirus ancestors. IMPORTANCE: Recent work indicates that the two recognized polydnavirus taxa, Bracovirus and Ichnovirus, are derived from distinct viruses whose genomes integrated into the genomes of ancestral wasps. However, the identity of the ichnovirus ancestor is unknown, and questions remain regarding the possibility that the two described ichnovirus subgroups, banchine and campoplegine ichnoviruses, have distinct origins. Our study provides unequivocal evidence that these two ichnovirus types are derived from related viral progenitors. This suggests that morphological and genomic differences observed between the ichnovirus lineages, including features unique to banchine ichnovirus genome segments, result from evolutionary divergence either before or after their endogenization. Strikingly, analysis of selected wasp genomic regions revealed genes presumed to be part of the replicative machinery of the progenitor virus, shedding new light on the likely identity of this virus. Finally, these genes could well play a role in ichnovirus replication as they were overexpressed in the virogenic tissue.


Asunto(s)
ADN Viral/genética , Evolución Molecular , Polydnaviridae/clasificación , Polydnaviridae/genética , Animales , Secuencia de Bases , Evolución Biológica , Perfilación de la Expresión Génica , Genoma Viral , Genómica , Datos de Secuencia Molecular , Polydnaviridae/enzimología , Análisis de Secuencia de ADN , Proteínas Virales/genética , Avispas/virología
11.
Proc Biol Sci ; 282(1803): 20142773, 2015 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-25673681

RESUMEN

Many parasites modify their host behaviour to improve their own transmission and survival, but the proximate mechanisms remain poorly understood. An original model consists of the parasitoid Dinocampus coccinellae and its coccinellid host, Coleomegilla maculata; during the behaviour manipulation, the parasitoid is not in contact with its host anymore. We report herein the discovery and characterization of a new RNA virus of the parasitoid (D. coccinellae paralysis virus, DcPV). Using a combination of RT-qPCR and transmission electron microscopy, we demonstrate that DcPV is stored in the oviduct of parasitoid females, replicates in parasitoid larvae and is transmitted to the host during larval development. Next, DcPV replication in the host's nervous tissue induces a severe neuropathy and antiviral immune response that correlate with the paralytic symptoms characterizing the behaviour manipulation. Remarkably, virus clearance correlates with recovery of normal coccinellid behaviour. These results provide evidence that changes in ladybeetle behaviour most likely result from DcPV replication in the cerebral ganglia rather than by manipulation by the parasitoid. This offers stimulating prospects for research on parasitic manipulation by suggesting for the first time that behaviour manipulation could be symbiont-mediated.


Asunto(s)
Escarabajos/parasitología , Escarabajos/virología , Virus ARN/fisiología , Avispas/virología , Animales , Escarabajos/fisiología , Femenino , Interacciones Huésped-Parásitos , Larva/parasitología , Larva/virología , Datos de Secuencia Molecular , Oviductos/virología , Avispas/fisiología
12.
BMC Genomics ; 15: 704, 2014 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-25149648

RESUMEN

BACKGROUND: Spodoptera frugiperda (Noctuidae) is a major agricultural pest throughout the American continent. The highly polyphagous larvae are frequently devastating crops of importance such as corn, sorghum, cotton and grass. In addition, the Sf9 cell line, widely used in biochemistry for in vitro protein production, is derived from S. frugiperda tissues. Many research groups are using S. frugiperda as a model organism to investigate questions such as plant adaptation, pest behavior or resistance to pesticides. RESULTS: In this study, we constructed a reference transcriptome assembly (Sf_TR2012b) of RNA sequences obtained from more than 35 S. frugiperda developmental time-points and tissue samples. We assessed the quality of this reference transcriptome by annotating a ubiquitous gene family--ribosomal proteins--as well as gene families that have a more constrained spatio-temporal expression and are involved in development, immunity and olfaction. We also provide a time-course of expression that we used to characterize the transcriptional regulation of the gene families studied. CONCLUSION: We conclude that the Sf_TR2012b transcriptome is a valid reference transcriptome. While its reliability decreases for the detection and annotation of genes under strong transcriptional constraint we still recover a fair percentage of tissue-specific transcripts. That allowed us to explore the spatial and temporal expression of genes and to observe that some olfactory receptors are expressed in antennae and palps but also in other non related tissues such as fat bodies. Similarly, we observed an interesting interplay of gene families involved in immunity between fat bodies and antennae.


Asunto(s)
Perfilación de la Expresión Génica/normas , Spodoptera/genética , Transcriptoma , Animales , Genes de Insecto , Inmunidad Innata/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Anotación de Secuencia Molecular , Estándares de Referencia , Olfato/genética , Spodoptera/metabolismo
13.
PLoS Pathog ; 6(5): e1000923, 2010 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-20523890

RESUMEN

Many thousands of endoparasitic wasp species are known to inject polydnavirus (PDV) particles into their caterpillar host during oviposition, causing immune and developmental dysfunctions that benefit the wasp larva. PDVs associated with braconid and ichneumonid wasps, bracoviruses and ichnoviruses respectively, both deliver multiple circular dsDNA molecules to the caterpillar. These molecules contain virulence genes but lack core genes typically involved in particle production. This is not completely unexpected given that no PDV replication takes place in the caterpillar. Particle production is confined to the wasp ovary where viral DNAs are generated from proviral copies maintained within the wasp genome. We recently showed that the genes involved in bracovirus particle production reside within the wasp genome and are related to nudiviruses. In the present work we characterized genes involved in ichnovirus particle production by analyzing the components of purified Hyposoter didymator Ichnovirus particles by LC-MS/MS and studying their organization in the wasp genome. Their products are conserved among ichnovirus-associated wasps and constitute a specific set of proteins in the virosphere. Strikingly, these genes are clustered in specialized regions of the wasp genome which are amplified along with proviral DNA during virus particle replication, but are not packaged in the particles. Clearly our results show that ichnoviruses and bracoviruses particles originated from different viral entities, thus providing an example of convergent evolution where two groups of wasps have independently domesticated viruses to deliver genes into their hosts.


Asunto(s)
Genoma de los Insectos/genética , Genoma Viral/genética , Polydnaviridae/genética , Avispas/genética , Avispas/virología , Animales , Evolución Molecular , Femenino , Familia de Multigenes/genética , Ovario/fisiología , Polydnaviridae/patogenicidad , Provirus/genética , Proteínas Virales/genética , Virión/genética , Virulencia
14.
Curr Opin Insect Sci ; 49: 63-70, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34839031

RESUMEN

Bracoviruses (BVs) and ichnoviruses (IVs) evolved from different endogenized viruses but through convergence have been coopted by parasitoids in the families Braconidae and Ichneumonidae for similar functions in parasitizing hosts. Experimentally studying the role of endogenized viral genes in virion morphogenesis remains a key challenge in the study of BVs and IVs. Here we summarize how multiomics, electron microscopy, and RNA interference (RNAi) methods have provided new insights about BV and IV gene function.


Asunto(s)
Polydnaviridae , Avispas , Animales , Humanos , Morfogénesis , Polydnaviridae/genética , Interferencia de ARN , Virión/genética , Avispas/genética
15.
Curr Opin Insect Sci ; 44: 64-71, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33866043

RESUMEN

Insect parasitoids have evolved symbiotic interactions with several viruses and thousands of parasitoid species have established mutualistic associations with polydnaviruses (PDVs). While PDVs have often been described as virulence factors allowing development of immature parasitoids inside their herbivore hosts, there is increasing awareness that PDVs can affect plant-insect interactions. We review recent literature showing that PDVs alter not only host physiology, but also feeding patterns and composition of herbivore's oral secretions. In turn PDV-induced changes in herbivore phenotype affect plant responses to herbivory with consequences ranging from differential expression of plant defense-related genes to wider ecological effects across multiple trophic levels. In this opinion paper we also highlight important missing gaps to fully understand the role of PDVs and other parasitoid-associated viral symbionts in a plant-insect interaction perspective. Because PDVs negatively impact performance and survival of herbivore pests, we conclude arguing that PDV genomes offer potential opportunities for biological control.


Asunto(s)
Herbivoria , Interacciones Huésped-Parásitos , Insectos/virología , Control Biológico de Vectores , Polydnaviridae/fisiología , Animales , Insectos/parasitología , Plantas , Simbiosis , Avispas/virología
16.
Sci Rep ; 11(1): 8990, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33903703

RESUMEN

Therophilus javanus (Bhat & Gupta) is an exotic larval endoparasitoid newly imported from Asia into Africa as a classical biological control agent against the pod borer Maruca vitrata (Fabricius). The parasitoid preference for the five larval instars of M. vitrata and their influence on progeny sex ratio were assessed together with the impact of larval host age at the time of oviposition on development time, mother longevity and offspring production. In a choice situation, female parasitoids preferred to oviposit in the first three larval instars. The development of immature stages of the parasitoid was observed inside three-day-old hosts, whereby the first two larval instars of T. javanus completed their development as endoparasites and the third larval instar as ectoparasite. The development time was faster when first larval instars (two- and three-day-old) of the host caterpillars were parasitized compared to second larval instar (four-day-old). The highest proportion of daughters (0.51) was observed when females were provided with four-day-old hosts. The lowest intrinsic rate of increase (r) (0.21 ± 0.01), the lowest rate of increase (λ) (1.23 ± 0.01), and the lowest net reproductive rate (Ro) (35.93 ± 6.51) were recorded on four-day-old hosts. These results are discussed in the light of optimizing mass rearing and release strategies.


Asunto(s)
Mariposas Nocturnas/parasitología , Control Biológico de Vectores , Avispas/fisiología , Animales , Femenino , Larva/parasitología , Masculino , Reproducción
17.
Toxins (Basel) ; 13(7)2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34357975

RESUMEN

Meteorus pulchricornis (Ichneumonoidea, Braconidae) is an endoparasitoid wasp of lepidopteran caterpillars. Its parasitic success relies on vesicles (named M. pulchricornis Virus-Like Particles or MpVLPs) that are synthesized in the venom gland and injected into the parasitoid host along with the venom during oviposition. In order to define the content and understand the biogenesis of these atypical vesicles, we performed a transcriptome analysis of the venom gland and a proteomic analysis of the venom and purified MpVLPs. About half of the MpVLPs and soluble venom proteins identified were unknown and no similarity with any known viral sequence was found. However, MpVLPs contained a large number of proteins labelled as metalloproteinases while the most abundant protein family in the soluble venom was that of proteins containing the Domain of Unknown Function DUF-4803. The high number of these proteins identified suggests that a large expansion of these two protein families occurred in M. pulchricornis. Therefore, although the exact mechanism of MpVLPs formation remains to be elucidated, these vesicles appear to be "metalloproteinase bombs" that may have several physiological roles in the host including modifying the functions of its immune cells. The role of DUF4803 proteins, also present in the venom of other braconids, remains to be clarified.


Asunto(s)
Metaloproteasas/metabolismo , Venenos de Avispas/genética , Animales , Femenino , Perfilación de la Expresión Génica , Interacciones Huésped-Parásitos , Larva , Mariposas Nocturnas , Proteómica , Venenos de Avispas/metabolismo , Avispas
18.
Viruses ; 12(10)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076395

RESUMEN

To ensure their own immature development as parasites, ichneumonid parasitoid wasps use endogenous viruses that they acquired through ancient events of viral genome integration. Thousands of species from the campoplegine and banchine wasp subfamilies rely, for their survival, on their association with these viruses, hijacked from a yet undetermined viral taxon. Here, we give an update of recent findings on the nature of the viral genes retained from the progenitor viruses and how they are organized in the wasp genome.


Asunto(s)
Genes Virales , Genoma de los Insectos , Virus/genética , Avispas/virología , Animales , ADN Viral/genética , Evolución Molecular , Simbiosis , Virión/genética , Virus/clasificación , Virus/aislamiento & purificación , Avispas/clasificación
19.
Curr Opin Insect Sci ; 32: 47-53, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31113631

RESUMEN

Ichnoviruses (IVs) are mutualistic, double-stranded DNA viruses playing a key role in the successful parasitism of thousands of endoparasitoid wasp species. IV particles are produced exclusively in the female wasp reproductive tract. They are co-injected along with the parasitoid egg into caterpillar hosts upon parasitization. The expression of viral genes by infected host cells leads to an immunosuppressive state and delayed development of the host, two pathologies that are critical to the successful development of the wasp egg and larva. Ichnovirus is one of the two recognized genera within the family Polydnaviridae (polydnaviruses or PDVs), the other genus being Bracovirus (BV), associated with braconid wasps. IVs are associated with ichneumonid wasps belonging to the subfamilies Campopleginae and Banchinae; attempts to identify IV particles in other ichneumonid subfamilies have so far been unsuccessful. Functional studies targeting IV genes expressed in parasitized hosts, along with investigations of the molecular mechanisms responsible for viral morphogenesis in the female wasp, have resulted in a better understanding of the biology of these atypical viruses.


Asunto(s)
Lepidópteros/virología , Polydnaviridae/fisiología , Avispas/virología , Animales , Lepidópteros/crecimiento & desarrollo , Lepidópteros/parasitología , Polydnaviridae/genética , Virión/genética , Replicación Viral
20.
Virus Res ; 263: 189-206, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30738799

RESUMEN

Bathyplectes spp. are ichneumonid solitary larval parasitoids of the alfalfa weevil which have been classified in the subfamily Campopleginae and which harbor atypical virus particles. Despite the morphological differences between Bathyplectes spp. particles and the polydnaviruses carried by a number of related campoplegine species, called ichnoviruses, the process by which they are produced is very similar to that of ichnoviruses. To address the question of the nature and origin of these atypical particles, the Bathyplectes anurus ovary transcriptome has been analyzed. We found a number of highly expressed transcripts displaying similarities with genes belonging to the machinery involved in the production of ichnovirus particles. In addition, transcripts with similarities with repeat-element genes, which are characteristic of the packaged campoplegine ichnovirus genome were identified. Altogether, our results provide evidence that Bathyplectes particles are related to ichnoviruses.


Asunto(s)
Himenópteros/virología , Polydnaviridae/aislamiento & purificación , Gorgojos/parasitología , Animales , Femenino , Perfilación de la Expresión Génica , Larva/parasitología , Ovario/virología , Polydnaviridae/clasificación , Polydnaviridae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA