Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nucleic Acids Res ; 42(4): 2346-57, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24304900

RESUMEN

Deletion of Hop2 in mice eliminates homologous chromosome synapsis and disrupts double-strand break (DSB) repair through homologous recombination. HOP2 in vitro shows two distinctive activities: when it is incorporated into a HOP2-MND1 complex it stimulates DMC1 and RAD51 recombination activities and the purified HOP2 alone is proficient in promoting strand invasion. We observed that a fraction of Mnd1(-/-) spermatocytes, which express HOP2 but apparently have inactive DMC1 and RAD51 due to lack of the HOP2-MND1 complex, exhibits a high level of chromosome synapsis and that most DSBs in these spermatocytes are repaired. This suggests that DSB repair catalyzed solely by HOP2 supports homologous chromosome pairing and synapsis. In addition, we show that in vitro HOP2 promotes the co-aggregation of ssDNA with duplex DNA, binds to ssDNA leading to unstacking of the bases, and promotes the formation of a three-strand synaptic intermediate. However, HOP2 shows distinctive mechanistic signatures as a recombinase. Namely, HOP2-mediated strand exchange does not require ATP and, in contrast to DMC1, joint molecules formed by HOP2 are more sensitive to mismatches and are efficiently dissociated by RAD54. We propose that HOP2 may act as a recombinase with specific functions in meiosis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Meiosis/genética , Recombinasas/metabolismo , Reparación del ADN por Recombinación , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Línea Celular , Emparejamiento Cromosómico , Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Ratones , Proteínas Nucleares/metabolismo , Proteínas de Unión a Fosfato
2.
J Biol Chem ; 284(27): 18458-70, 2009 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-19419957

RESUMEN

FANCJ mutations are genetically linked to the Fanconi anemia complementation group J and predispose individuals to breast cancer. Understanding the role of FANCJ in DNA metabolism and how FANCJ dysfunction leads to tumorigenesis requires mechanistic studies of FANCJ helicase and its protein partners. In this work, we have examined the ability of FANCJ to unwind DNA molecules with specific base damage that can be mutagenic or lethal. FANCJ was inhibited by a single thymine glycol, but not 8-oxoguanine, in either the translocating or nontranslocating strands of the helicase substrate. In contrast, the human RecQ helicases (BLM, RECQ1, and WRN) display strand-specific inhibition of unwinding by the thymine glycol damage, whereas other DNA helicases (DinG, DnaB, and UvrD) are not significantly inhibited by thymine glycol in either strand. In the presence of replication protein A (RPA), but not Escherichia coli single-stranded DNA-binding protein, FANCJ efficiently unwound the DNA substrate harboring the thymine glycol damage in the nontranslocating strand; however, inhibition of FANCJ helicase activity by the translocating strand thymine glycol was not relieved. Strand-specific stimulation of human RECQ1 helicase activity was also observed, and RPA bound with high affinity to single-stranded DNA containing a single thymine glycol. Based on the biochemical studies, we propose a model for the specific functional interaction between RPA and FANCJ on the thymine glycol substrates. These studies are relevant to the roles of RPA, FANCJ, and other DNA helicases in the metabolism of damaged DNA that can interfere with basic cellular processes of DNA metabolism.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Daño del ADN/fisiología , ADN/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Estrés Oxidativo/genética , Proteína de Replicación A/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Neoplasias de la Mama/genética , Aductos de ADN/genética , Aductos de ADN/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Activación Enzimática/fisiología , Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Femenino , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Proteína de Replicación A/genética , Especificidad por Sustrato , Timina/análogos & derivados , Timina/metabolismo
3.
Cell Rep ; 18(6): 1383-1394, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28178517

RESUMEN

Meiotic homologous recombination (HR) is important for proper chromosomal segregation during gametogenesis and facilitates evolutionary adaptation via genomic reshuffling. In most eukaryotes, HR is mediated by two recombinases, the ubiquitous RAD51 and the meiosis-specific DMC1. The role of RAD51 in mammalian meiosis is unclear and study of its function is limited due to embryonic lethality of RAD51 knockouts. Here, we developed an in vivo meiotic knockdown and protein complementation system to study RAD51 during mouse spermatogenesis. We show that RAD51 is crucial during meiotic prophase and its loss leads to depletion of late prophase I spermatocytes through a p53-dependent apoptotic pathway. This phenotype is distinct from that observed in the DMC1 knockdown. Our meiotic knockdown and complementation system establishes an experimental platform for mechanistic studies of meiotic proteins with unknown functions or essential genes for which a testis-specific knockout is not possible.


Asunto(s)
Meiosis/fisiología , Mitosis/fisiología , Recombinasa Rad51/metabolismo , Espermatogénesis/fisiología , Animales , Apoptosis/fisiología , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/fisiología , Recombinación Homóloga/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Recombinasas/metabolismo , Espermatocitos/metabolismo , Espermatocitos/fisiología
4.
Trends Biotechnol ; 23(2): 97-102, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15661347

RESUMEN

Homologous recombination (HR) is one of the central processes of DNA metabolism, combining roles in both cell housekeeping and the evolution of genomes. In eukaryotes, HR underlies meiosis and ensures genome stability. The complete sequencing of numerous bacterial genomes has shown that HR has a substantial role in the evolution of microorganisms, especially pathogens. HR systems from different species and their isolated components are finding an expanding field of applications in modern genetic engineering and bio- and nanotechnologies. Recently, much progress has been made in our understanding of HR mechanisms in eukaryotes and the practical applications of HR systems.


Asunto(s)
Evolución Molecular , Genoma , Rec A Recombinasas/genética , Recombinación Genética , Animales , Bacterias/genética , Bacterias/metabolismo , Replicación del ADN , Humanos , Rec A Recombinasas/metabolismo
5.
Nat Commun ; 5: 4198, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24943459

RESUMEN

The HOP2-MND1 heterodimer is required for progression of homologous recombination in eukaryotes. In vitro, HOP2-MND1 stimulates the DNA strand exchange activities of RAD51 and DMC1. We demonstrate that HOP2-MND1 induces changes in the conformation of RAD51 that profoundly alter the basic properties of RAD51. HOP2-MND1 enhances the interaction of RAD51 with nucleotide cofactors and modifies its DNA-binding specificity in a manner that stimulates DNA strand exchange. It enables RAD51 DNA strand exchange in the absence of divalent metal ions required for ATP binding and offsets the effect of the K133A mutation that disrupts ATP binding. During nucleoprotein formation HOP2-MND1 helps to load RAD51 on ssDNA restricting its dsDNA-binding and during the homology search it promotes dsDNA binding removing the inhibitory effect of ssDNA. The magnitude of the changes induced in RAD51 defines HOP2-MND1 as a 'molecular trigger' of RAD51 DNA strand exchange.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Nucleótidos/metabolismo , Recombinasa Rad51/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Proteínas de Ciclo Celular/genética , ADN/genética , Ratones , Unión Proteica , Recombinasa Rad51/genética
6.
Nat Struct Mol Biol ; 18(1): 56-60, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21151113

RESUMEN

The ubiquitously expressed Rad51 recombinase and the meiosis-specific Dmc1 recombinase promote the formation of strand-invasion products (D-loops) between homologous molecules. Strand-invasion products are processed by either the double-strand break repair (DSBR) or synthesis-dependent strand annealing (SDSA) pathway. D-loops destined to be processed by SDSA need to dissociate, producing non-crossovers, and those destined for DSBR should resist dissociation to generate crossovers. The mechanism that channels recombination intermediates into different homologous-recombination pathways is unknown. Here we show that D-loops in a human DMC1-driven reaction are substantially more resistant to dissociation by branch-migration proteins such as RAD54 than those formed by RAD51. We propose that the intrinsic resistance to dissociation of DMC1 strand-invasion intermediates may account for why DMC1 is essential to ensure the proper segregation of chromosomes in meiosis.


Asunto(s)
Proteínas de Ciclo Celular/química , Segregación Cromosómica , Proteínas de Unión al ADN/química , Meiosis , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , ADN Helicasas , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Humanos , Modelos Genéticos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Estructura Terciaria de Proteína , Recombinasa Rad51/química , Recombinasa Rad51/metabolismo , Recombinación Genética , Transactivadores/química , Transactivadores/metabolismo
7.
J Biol Chem ; 282(25): 18437-18447, 2007 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-17416902

RESUMEN

The Escherichia coli DinG protein is a DNA damage-inducible member of the helicase superfamily 2. Using a panel of synthetic substrates, we have systematically investigated structural requirements for DNA unwinding by DinG. We have found that the helicase does not unwind blunt-ended DNAs or substrates with 3'-ss tails. On the other hand, the 5'-ss tails of 11-15 nucleotides are sufficient to initiate DNA duplex unwinding; bifurcated substrates further facilitate helicase activity. DinG is active on 5'-flap structures; however, it is unable to unwind 3'-flaps. Similarly to the homologous Saccharomyces cerevisiae Rad3 helicase, DinG unwinds DNA.RNA duplexes. DinG is active on synthetic D-loops and R-loops. The ability of the enzyme to unwind D-loops formed on superhelical plasmid DNA by the E. coli recombinase RecA suggests that D-loops may be natural substrates for DinG. Although the availability of 5'-ssDNA tails is a strict requirement for duplex unwinding by DinG, the unwinding of D-loops can be initiated on substrates without any ss tails. Since DinG is DNA damage-inducible and is active on D-loops and forked structures, which mimic intermediates of homologous recombination and replication, we conclude that this helicase may be involved in recombinational DNA repair and the resumption of replication after DNA damage.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Secuencia de Bases , Técnicas Biosensibles , ADN/química , Daño del ADN , Reparación del ADN , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Oligonucleótidos/química , Fosforilación , Plásmidos/metabolismo , Recombinación Genética , Especificidad por Sustrato , Resonancia por Plasmón de Superficie
8.
Genes Dev ; 21(14): 1758-66, 2007 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-17639081

RESUMEN

Meiotic recombination between homologous chromosomes ensures their proper segregation at the first division of meiosis and is the main force shaping genetic variation of genomes. The HOP2 and MND1 genes are essential for this recombination: Their disruption results in severe defects in homologous chromosome synapsis and an early-stage failure in meiotic recombination. The mouse Hop2 and Mnd1 proteins form a stable heterodimer (Hop2/Mnd1) that greatly enhances Dmc1-mediated strand invasion. In order to elucidate the mechanism by which Hop2/Mnd1 stimulates Dmc1, we identify several intermediate steps in the homologous pairing reaction promoted by Dmc1. We show that Hop2/Mnd1 greatly stimulates Dmc1 to promote synaptic complex formation on long duplex DNAs, a step previously revealed only for bacterial homologous recombinases. This synaptic alignment is a consequence of the ability of Hop2/Mnd1 to (1) stabilize Dmc1-single-stranded DNA (ssDNA) nucleoprotein complexes, and (2) facilitate the conjoining of DNA molecules through the capture of double-stranded DNA by the Dmc1-ssDNA nucleoprotein filament. To our knowledge, Hop2/Mnd1 is the first homologous recombinase accessory protein that acts on these two separate and critical steps in mammalian meiotic recombination.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Emparejamiento Cromosómico/fisiología , Proteínas de Unión al ADN/metabolismo , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Técnicas In Vitro , Ratones , Modelos Biológicos , Complejos Multiproteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Mol Cell ; 15(6): 846-7, 2004 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-15383274

RESUMEN

While it is still unclear how RecA and its eukaryotic homologs conduct genome-wide homology searches, Radding and colleagues report in this issue of Molecular Cell (Folta-Stogniew et al., 2004) that the latter stages of homologous recognition or alignment involve base flipping (localized melting) and switching (annealing) at A:T rich regions.


Asunto(s)
Emparejamiento Base , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Rec A Recombinasas/metabolismo , Sinapsis/enzimología , 2-Aminopurina/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Bases , Transferencia Resonante de Energía de Fluorescencia , Enlace de Hidrógeno , Homología de Secuencia de Ácido Nucleico
10.
J Biol Chem ; 278(30): 28284-93, 2003 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-12748189

RESUMEN

The dinG promoter was first isolated in a genetic screen scoring for damage-inducible loci in Escherichia coli (Lewis, L. K., Jenkins, M. E., and Mount, D. W. (1992) J. Bacteriol. 174, 3377-3385). Sequence analysis suggests that the dinG gene encodes a putative helicase related to a group of eukaryotic helicases that includes mammalian XPD (Koonin, E. V. (1993) Nucleic Acids Res. 21, 1497), an enzyme involved in transcription-coupled nucleotide excision repair and basal transcription. We have characterized the dinG gene product from E. coli using genetic and biochemical approaches. Deletion of dinG has no severe phenotype, indicating that it is non-essential for cell viability. Both dinG deletion and over-expression of the DinG protein from a multicopy plasmid result in a slight reduction of UV resistance. DinG, purified as a fusion protein from E. coli cells, behaves as a monomer in solution, as judged from gel filtration experiments. DinG is an ATP-hydrolyzing enzyme; single-stranded (ss) DNA stimulates the ATPase activity 15-fold. Kinetic data yield a Hill coefficient of 1, consistent with one ATP-hydrolyzing site per DinG molecule. DinG possesses a DNA helicase activity; it translocates along ssDNA in a 5' --> 3' direction, as revealed in experiments with substrates containing non-natural 5'-5' and 3'-3' linkages. The ATP-dependent DNA helicase activity of DinG requires divalent cations (Mg2+, Ca2+, and Mn2+) but is not observed in the presence of Zn2+. The DinG helicase does not discriminate between ribonucleotide and deoxyribonucleotide triphosphates, and it unwinds duplex DNA with similar efficiency in the presence of ATP or dATP. We discuss the possible involvement of the DinG helicase in DNA replication and repair processes.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia de Bases , Cationes , Supervivencia Celular , Cromatografía en Gel , ADN/metabolismo , Reparación del ADN , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Genoma Bacteriano , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Modelos Biológicos , Datos de Secuencia Molecular , Fenotipo , Plásmidos/metabolismo , Factores de Tiempo , Transcripción Genética , Rayos Ultravioleta
11.
J Biol Chem ; 279(29): 30037-46, 2004 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-15138263

RESUMEN

When DinI is present at concentrations that are stoichiometric with those of RecA or somewhat greater, DinI has a substantial stabilizing effect on RecA filaments bound to DNA. Exchange of RecA between free and bound forms was almost entirely suppressed, and highly stable filaments were documented with several different experimental methods. DinI-mediated stabilization did not affect RecA-mediated ATP hydrolysis and LexA co-protease activities. Initiation of DNA strand exchange was affected in a DNA structure-dependent manner, whereas ongoing strand exchange was not affected. Destabilization of RecA filaments occurred as reported in earlier work but only when DinI protein was present at very high concentrations, generally superstoichiometric, relative to the RecA protein concentration. DinI did not facilitate RecA filament formation but stabilized the filaments only after they were formed. The interaction between the RecA protein and DinI was modulated by the C terminus of RecA. We discuss these results in the context of a new hypothesis for the role of DinI in the regulation of recombination and the SOS response.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Rec A Recombinasas/metabolismo , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , ADN/química , ADN de Cadena Simple/química , Relación Dosis-Respuesta a Droga , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Exonucleasas/metabolismo , Eliminación de Gen , Hidrólisis , Iones , Cinética , Magnesio/farmacología , Microscopía Electrónica , Datos de Secuencia Molecular , Mutación , Oligonucleótidos/química , Unión Proteica , Estructura Terciaria de Proteína , Rec A Recombinasas/química , Recombinación Genética , Resonancia por Plasmón de Superficie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA