Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Neurobiol Dis ; 169: 105734, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35462006

RESUMEN

People living with HIV (PLH) have significantly higher rates of cognitive impairment (CI) and major depressive disorder (MDD) versus the general population. The enzyme neutral sphingomyelinase 2 (nSMase2) is involved in the biogenesis of ceramide and extracellular vesicles (EVs), both of which are dysregulated in PLH, CI, and MDD. Here we evaluated EcoHIV-infected mice for behavioral abnormalities relevant to depression and cognition deficits, and assessed the behavioral and biochemical effects of nSMase2 inhibition. Mice were infected with EcoHIV and daily treatment with either vehicle or the nSMase2 inhibitor (R)-(1-(3-(3,4-dimethoxyphenyl)-2,6-dimethylimidazo[1,2-b]pyridazin-8-yl)pyrrolidin-3-yl)-carbamate (PDDC) began 3 weeks post-infection. After 2 weeks of treatment, mice were subjected to behavior tests. EcoHIV-infected mice exhibited behavioral abnormalities relevant to MDD and CI that were reversed by PDDC treatment. EcoHIV infection significantly increased cortical brain nSMase2 activity, resulting in trend changes in sphingomyelin and ceramide levels that were normalized by PDDC treatment. EcoHIV-infected mice also exhibited increased levels of brain-derived EVs and altered microRNA cargo, including miR-183-5p, miR-200c-3p, miR-200b-3p, and miR-429-3p, known to be associated with MDD and CI; all were normalized by PDDC. In conclusion, inhibition of nSMase2 represents a possible new therapeutic strategy for the treatment of HIV-associated CI and MDD.


Asunto(s)
Trastorno Depresivo Mayor , Vesículas Extracelulares , Infecciones por VIH , MicroARNs , Animales , Ceramidas , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Humanos , Ratones , MicroARNs/genética , MicroARNs/farmacología , Esfingomielina Fosfodiesterasa/genética
2.
FASEB J ; 34(2): 1996-2010, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31907999

RESUMEN

Despite the use of antiretroviral therapy for the treatment of HIV-1 infection, cognitive impairments, that is, HIV-1-associated neurocognitive disorders remain prevalent potentially due to persistent viral replication, production of viral proteins, associated brain inflammation or in certain instances, antiretroviral neurotoxicity. Cellular targets in the brain include microglia which in response to infection release inflammatory markers and viral proteins. Evidence suggests that PPARγ agonists exert anti-inflammatory properties in neurological disorders. However, these agonists namely, thiazolidinediones have limited use in the clinic due to reported adverse side effects. INT131 is a novel non-thiazolidinedione compound that belongs to a new class of drugs known as selective PPARγ modulators. INT131 is considered to have a safer profile; however, its neuroprotective role in vivo is not known.The goal of this study was to examine the effect of INT131 in the context of EcoHIV-induced inflammation in vitro, in primary cultures of mouse glial cells and in vivo, in a mouse model of EcoHIV-associated brain inflammation, as well as characterize its pharmacokinetic properties and brain penetration. In primary cultures of glial cells and in the in vivo mouse model, EcoHIV exposure resulted in a significant elevation of inflammatory markers such as TNFα, IL-1ß, CCL3, and C3 which were attenuated with INT131 treatment. Pharmacokinetic analyses revealed that INT131 penetrates into the brain with a brain to blood partition ratio Kp value of 8.5%. Overall, this is the first report to demonstrate that INT131 could be a potential candidate for the treatment of HIV-1-associated brain inflammation.


Asunto(s)
Antiinflamatorios , Infecciones por VIH/tratamiento farmacológico , VIH-1/metabolismo , Trastornos Neurocognitivos/tratamiento farmacológico , PPAR gamma/agonistas , Quinolinas , Sulfonamidas , Animales , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , VIH-1/genética , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Ratones , Trastornos Neurocognitivos/genética , Trastornos Neurocognitivos/metabolismo , Trastornos Neurocognitivos/patología , Neuroglía/patología , PPAR gamma/genética , PPAR gamma/metabolismo , Quinolinas/farmacocinética , Quinolinas/farmacología , Sulfonamidas/farmacocinética , Sulfonamidas/farmacología
3.
PLoS Pathog ; 14(6): e1007061, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29879225

RESUMEN

Suppression of HIV replication by antiretroviral therapy (ART) or host immunity can prevent AIDS but not other HIV-associated conditions including neurocognitive impairment (HIV-NCI). Pathogenesis in HIV-suppressed individuals has been attributed to reservoirs of latent-inducible virus in resting CD4+ T cells. Macrophages are persistently infected with HIV but their role as HIV reservoirs in vivo has not been fully explored. Here we show that infection of conventional mice with chimeric HIV, EcoHIV, reproduces physiological conditions for development of disease in people on ART including immunocompetence, stable suppression of HIV replication, persistence of integrated, replication-competent HIV in T cells and macrophages, and manifestation of learning and memory deficits in behavioral tests, termed here murine HIV-NCI. EcoHIV established latent reservoirs in CD4+ T lymphocytes in chronically-infected mice but could be induced by epigenetic modulators ex vivo and in mice. In contrast, macrophages expressed EcoHIV constitutively in mice for up to 16 months; murine leukemia virus (MLV), the donor of gp80 envelope in EcoHIV, did not infect macrophages. Both EcoHIV and MLV were found in brain tissue of infected mice but only EcoHIV induced NCI. Murine HIV-NCI was prevented by antiretroviral prophylaxis but once established neither persistent EcoHIV infection in mice nor NCI could be reversed by long-acting antiretroviral therapy. EcoHIV-infected, athymic mice were more permissive to virus replication in macrophages than were wild-type mice, suffered cognitive dysfunction, as well as increased numbers of monocytes and macrophages infiltrating the brain. Our results suggest an important role of HIV expressing macrophages in HIV neuropathogenesis in hosts with suppressed HIV replication.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Reservorios de Enfermedades , Infecciones por VIH/complicaciones , VIH/fisiología , Macrófagos Peritoneales/virología , Trastornos Neurocognitivos/virología , Traslado Adoptivo , Anciano , Animales , Antirretrovirales/uso terapéutico , Encéfalo/virología , Femenino , VIH/genética , VIH/inmunología , VIH/patogenicidad , Infecciones por VIH/tratamiento farmacológico , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Persona de Mediana Edad , Plásmidos , Bazo/citología , Bazo/inmunología
4.
J Neurovirol ; 24(4): 398-410, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29594983

RESUMEN

The widespread use of antiretroviral therapy for treatment of human immunodeficiency virus (HIV) infections has dramatically improved the quality and duration of life for HIV-positive individuals. Despite this success, HIV persists for the life of an infected person in tissue reservoirs including the nervous system. Thus, whether HIV exacerbates age-related brain disorders such as Parkinson's disease (PD) is of concern. In support of this idea, HIV infection can be associated with motor and gait abnormalities that parallel late-stage manifestations of PD including dopaminergic neuronal loss. With these findings in hand, we investigated whether viral infection could affect nigrostriatal degeneration or exacerbate chemically induced nigral degeneration. We now demonstrate an additive effect of EcoHIV on dopaminergic neuronal loss and neuroinflammation induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication. HIV-1-infected humanized mice failed to recapitulate these EcoHIV results suggesting species-specific neural signaling. The results demonstrate a previously undefined EcoHIV-associated neurodegenerative response that may be used to model pathobiological aspects of PD.


Asunto(s)
Infecciones por VIH/complicaciones , Intoxicación por MPTP/complicaciones , Sustancia Negra/patología , Sustancia Negra/virología , Animales , Infecciones por VIH/patología , VIH-1 , Humanos , Intoxicación por MPTP/patología , Ratones , Ratones Endogámicos C57BL , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/virología
5.
Am J Physiol Lung Cell Mol Physiol ; 312(4): L500-L509, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28104604

RESUMEN

Cigarette smoke usage is prevalent in human immunodeficiency virus (HIV)-positive patients, and, despite highly active antiretroviral therapy, these individuals develop an accelerated form of chronic obstructive pulmonary disease (COPD). Studies investigating the mechanisms of COPD development in HIV have been limited by the lack of suitable mouse models. Here we describe a model of HIV-induced COPD in wild-type mice using EcoHIV, a chimeric HIV capable of establishing chronic infection in immunocompetent mice. A/J mice were infected with EcoHIV and subjected to whole body cigarette smoke exposure. EcoHIV was detected in alveolar macrophages of mice. Compared with uninfected mice, concomitant EcoHIV infection significantly reduced forced expiratory flow 50%/forced vital capacity and enhanced distal airspace enlargement following cigarette smoke exposure. Lung IL-6, granulocyte-macrophage colony-stimulating factor, neutrophil elastase, cathepsin G, and matrix metalloproteinase-9 expression was significantly enhanced in smoke-exposed EcoHIV-infected mice. These changes coincided with enhanced IκBα, ERK1/2, p38, and STAT3 phosphorylation and lung cell apoptosis. Thus, the EcoHIV smoke exposure mouse model reproduces several of the pathophysiological features of HIV-related COPD in humans, indicating that this murine model can be used to determine key parameters of HIV-related COPD and to test future therapies for this disorder.


Asunto(s)
Infecciones por VIH/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Animales , Apoptosis , Modelos Animales de Enfermedad , Humanos , Pulmón/enzimología , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Macrófagos Alveolares/patología , Macrófagos Alveolares/virología , Masculino , Ratones , Neutrófilos/metabolismo , Péptido Hidrolasas/metabolismo , Neumonía/patología , Fumar/efectos adversos
6.
J Neuroinflammation ; 14(1): 23, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28122624

RESUMEN

BACKGROUND: Abnormal activation of the complement system contributes to some central nervous system diseases but the role of complement in HIV-associated neurocognitive disorder (HAND) is unclear. METHODS: We used real-time PCR and immunohistochemistry to detect complement expression in postmortem brain tissue from HAND patients and controls. To further investigate the basis for viral induction of gene expression in the brain, we studied the effect of HIV on C3 expression by astrocytes, innate immune effector cells, and targets of HIV. Human fetal astrocytes (HFA) were infected with HIV in culture and cellular pathways and factors involved in signaling to C3 expression were elucidated using pharmacological pathway inhibitors, antisense RNA, promoter mutational analysis, and fluorescence microscopy. RESULTS: We found significantly increased expression of complement components including C3 in brain tissues from patients with HAND and C3 was identified by immunocytochemistry in astrocytes and neurons. Exposure of HFA to HIV in culture-induced C3 promoter activity, mRNA expression, and protein production. Use of pharmacological inhibitors indicated that induction of C3 expression by HIV requires NF-κB and protein kinase signaling. The relevance of NF-κB regulation to C3 induction was confirmed through detection of NF-κB translocation into nuclei and inhibition through overexpression of the physiological NF-κB inhibitor, I-κBα. C3 promoter mutation analysis revealed that the NF-κB and SP binding sites are dispensable for the induction by HIV, while the proximal IL-1ß/IL-6 responsive element is essential. HIV-treated HFA secreted IL-6, exogenous IL-6 activated the C3 promoter, and anti-IL-6 antibodies blocked HIV activation of the C3 promoter. The activation of IL-6 transcription by HIV was dependent upon an NF-κB element within the IL-6 promoter. CONCLUSIONS: These results suggest that HIV activates C3 expression in primary astrocytes indirectly, through NF-κB-dependent induction of IL-6, which in turn activates the C3 promoter. HIV induction of C3 and IL-6 in astrocytes may contribute to HIV-mediated inflammation in the brain and cognitive dysfunction.


Asunto(s)
Astrocitos/metabolismo , Complemento C3/metabolismo , Infecciones por VIH/patología , Interleucina-6/metabolismo , FN-kappa B/metabolismo , Adulto , Astrocitos/virología , Ácidos Cafeicos/farmacología , Complemento C3/genética , Activación Enzimática/efectos de los fármacos , Activadores de Enzimas/farmacología , Inhibidores Enzimáticos/farmacología , Femenino , Feto , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Regulación Viral de la Expresión Génica/fisiología , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Interleucina-6/genética , Masculino , Persona de Mediana Edad , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
7.
J Neuroinflammation ; 13(1): 144, 2016 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-27287400

RESUMEN

BACKGROUND: Elevated levels of oncostatin M (OSM), an interleukin-6 cytokine family member, have been observed in HIV-1-associated neurocognitive disorders (HAND) and Alzheimer's disease. However, the function of OSM in these disease conditions is unclear. Since deficient glutamate uptake by astrocytes is instrumental in HAND-associated neurotoxicity, we hypothesized that OSM impairs glutamate uptake in astrocytes and thereby promotes neuronal excitotoxicity. METHODS: Primary cultures of mouse cortical astrocytes, neurons, microglia, and BV2 cell line were used. The expression of glutamate transporters (GLAST/EAAT1 and GLT-1/EAAT2) was investigated using real-time PCR and Western blot, and their activity was assessed by measuring (3)H-D-aspartate uptake. Neuronal toxicity was measured using the colorimetric MTT (3-(4,5-dimethylthiazol-2-yl-) 2,5-diphenyltetrazolium bromide) assay and immunocytochemistry. A chimeric HIV-1 that infects murine cells (EcoHIV/NL4-3-GFP virus (EcoHIV)) was used to investigate whether the virus induces OSM, OSM receptor (OSMR)-ß, glycoprotein 130 (gp130), GLT-1, GLAST (mRNA and protein), and OSM release (ELISA) in cultured BV2 cells, primary microglia, or astrocytes. Statistical analyses of the data were performed using one-way ANOVA (to allow multiple comparisons) and two-tailed Student's t test. RESULTS: OSM treatment (10 ng/mL) time-dependently reduced GLAST and GLT-1 expression and inhibited (3)H-D-aspartate uptake in cultured astrocytes in a concentration-dependent manner, an effect prevented by the Janus kinase (JAK)/signal transducers and activators of transcription (STAT)3 inhibitor AG490. Down-regulation of astrocytic glutamate transport by OSM resulted in NMDA receptor-dependent excitotoxicity in cortical neurons. Infection with EcoHIV induced OSM gene expression and protein release in BV2 cells and microglia, but not in astrocytes. Conversely, EcoHIV caused a fivefold increase in OSMR-ß mRNA (but not gp130) and protein in astrocytes, but not in microglia, which did not express OSMR-ß protein. Finally, astrocytic expression of GLAST gene was unaffected by EcoHIV, whereas GLT-1 mRNA was increased by twofold. CONCLUSIONS: We provide first evidence that activation of JAK/STAT3 signaling by OSM inhibits glutamate uptake in astrocytes, which results in neuronal excitotoxicity. Our findings with EcoHIV suggest that targeting OSMR-ß signaling in astrocytes might alleviate HIV-1-associated excitotoxicity.


Asunto(s)
Antineoplásicos/efectos adversos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Ácido Glutámico/metabolismo , Oncostatina M/efectos adversos , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Ácido Aspártico/metabolismo , Astrocitos/virología , Células Cultivadas , Corteza Cerebral/citología , Citocinas/genética , Citocinas/metabolismo , Embrión de Mamíferos , Agonistas de Aminoácidos Excitadores/toxicidad , Transportador 2 de Aminoácidos Excitadores/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratones , Ratones Endogámicos C57BL , N-Metilaspartato/toxicidad , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oncostatina M/farmacología , Subunidad beta del Receptor de Oncostatina M/metabolismo , Proteínas Oncogénicas de Retroviridae/toxicidad , Transducción de Señal/efectos de los fármacos
8.
J Neurovirol ; 21(3): 235-41, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25933548

RESUMEN

Combination antiretroviral therapy (ART) has altered the outcomes of HIV infection in treated populations by greatly reducing the incidence of opportunistic infections, cancer, and HIV-associated dementia. Despite these benefits, treated patients remain at high risk of chronic diseases affecting the peripheral organs and brain. Generally, these morbidities are attributed to persistence of latent HIV in resting T cells, chronic inflammation, and metabolic effects of ART. This review makes the case that monocytes/macrophages warrant attention as persistent reservoirs of HIV under ART, source of systemic and brain inflammation, and important targets for HIV eradication to control chronic HIV diseases.


Asunto(s)
Complejo SIDA Demencia/virología , Reservorios de Enfermedades/virología , Macrófagos/virología , Fármacos Anti-VIH/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Humanos
9.
Virology ; 589: 109917, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37951088

RESUMEN

Antiretroviral therapy controls immunodeficiency in people with HIV but many develop mild neurocognitive disorder. Here we investigated HIV brain disease by infecting mice with the chimeric HIV, EcoHIV, and probing changes in brain gene expression during infection and reversal with polyinosinic-polycytidylic acid (poly I:C). EcoHIV-infected C57BL/6 mice were treated with poly I:C and monitored by assay of learning in radial arm water maze, RNAseq of striatum, and QPCR of virus burden and brain transcripts. Poly I:C reversed EcoHIV-associated cognitive impairment and reduced virus burden. Major pathways downregulated by infection involved neuronal function, these transcriptional changes were normalized by poly I:C treatment. Innate immune responses were the major pathways induced in EcoHIV-infected, poly I:C treated mice. Our findings provide a framework to identify brain cell genes dysregulated by HIV infection and identify a set of innate immune response genes that can block systemic infection and its associated dysfunction in the brain.


Asunto(s)
Infecciones por VIH , Humanos , Animales , Ratones , Infecciones por VIH/complicaciones , Ratones Endogámicos C57BL , Encéfalo , Inmunidad Innata , Cognición , Poli I
10.
Viruses ; 16(5)2024 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-38793575

RESUMEN

BACKGROUND: EcoHIV is a chimeric HIV that replicates in mice in CD4+ T cells, macrophages, and microglia (but not in neurons), causing lasting neurocognitive impairment resembling neurocognitive disease in people living with HIV. The present study was designed to develop EcoHIV-susceptible primary mouse brain cultures to investigate the indirect effects of HIV infection on neuronal integrity. RESULTS: We used two EcoHIV clones encoding EGFP and mouse bone marrow-derived macrophages (BMM), mixed mouse brain cells, or enriched mouse glial cells from two wild-type mouse strains to test EcoHIV replication efficiency, the identity of productively infected cells, and neuronal apoptosis and integrity. EcoHIV replicated efficiently in BMM. In mixed brain cell cultures, EcoHIV targeted microglia but did not cause neuronal apoptosis. Instead, the productive infection of the microglia activated them and impaired synaptophysin expression, dendritic density, and axonal structure in the neurons. EcoHIV replication in the microglia and neuronal structural changes during infection were prevented by culture with an antiretroviral. CONCLUSIONS: In murine brain cell cultures, EcoHIV replication in the microglia is largely responsible for the aspects of neuronal dysfunction relevant to cognitive disease in infected mice and people living with HIV. These cultures provide a tool for further study of HIV neuropathogenesis and its control.


Asunto(s)
Encéfalo , Microglía , Neuronas , Replicación Viral , Animales , Ratones , Encéfalo/virología , Encéfalo/patología , Neuronas/virología , Neuronas/patología , Microglía/virología , Células Cultivadas , Infecciones por VIH/virología , Macrófagos/virología , Modelos Animales de Enfermedad , Apoptosis , Humanos , VIH-1/fisiología , Cultivo Primario de Células , Ratones Endogámicos C57BL
11.
Eur J Immunol ; 42(12): 3243-55, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22930183

RESUMEN

The popularity of nonreplicating adenoviruses of chimpanzee origin (ChAdVs) as vectors for subunit vaccines is on the rise. This is mainly for their excellent safety and impressive immunogenicity observed in human studies to date. Here, we recloned the chimpanzee adenovirus sero type 68 (ChAdV-68), also designated SAdV-25 and AdC68, genome and demonstrated its straightforward genetic manipulation facilitated by the use of bacterial artificial chromosome recombineering. To generate the ChAdV68.GagB vaccine, the HIV-1 consensus clade B Gag-derived Tg was inserted into the E1 region. In part confirming previous observations, the ChAdV68.GagB vaccine alone and in heterologous prime-boost regimens with plasmid DNA- and modified vaccinia virus Ankara (MVA)-vectored vaccines induced robust polyfunctional HIV-1-specific CD8(+) and CD4(+) T-cell responses with a gut-homing phenotype. Importantly, we showed that when a single epitope is expressed as an immunodominant CD8(+) T-cell determinant, responses elicited by ChAdV68.GagB alone and in combination lowered surrogate challenge EcoHIV/NDK (where EcoHIV is chimeric ecotropic HIV) virus load in mice both at the peak T-cell frequencies 2 weeks after vaccination and 16 weeks later indicating development of protective effector memory. These results parallel the immunogenicity of similar vaccine regimens in macaques and an ongoing phase I/IIa trial in humans, and support further development of vaccines vectored by ChAdVs.


Asunto(s)
Vacunas contra el SIDA/inmunología , Adenoviridae , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , Inmunización Secundaria , Virus Vaccinia , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/genética , Vacunas contra el SIDA/farmacología , Animales , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Genoma Viral/genética , Genoma Viral/inmunología , Células HEK293 , Infecciones por VIH/genética , Infecciones por VIH/inmunología , VIH-1/genética , Humanos , Macaca , Ratones , Ratones Endogámicos BALB C , Pan troglodytes , Factores de Tiempo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
12.
PLoS Pathog ; 7(9): e1002213, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21909266

RESUMEN

Antiretroviral therapy (ART) has reduced morbidity and mortality in HIV-1 infection; however HIV-1-associated neurocognitive disorders (HAND) persist despite treatment. The reasons for the limited efficacy of ART in the brain are unknown. Here we used functional genomics to determine ART effectiveness in the brain and to identify molecular signatures of HAND under ART. We performed genome-wide microarray analysis using Affymetrix U133 Plus 2.0 Arrays, real-time PCR, and immunohistochemistry in brain tissues from seven treated and eight untreated HAND patients and six uninfected controls. We also determined brain virus burdens by real-time PCR. Treated and untreated HAND brains had distinct gene expression profiles with ART transcriptomes clustering with HIV-1-negative controls. The molecular disease profile of untreated HAND showed dysregulated expression of 1470 genes at p<0.05, with activation of antiviral and immune responses and suppression of synaptic transmission and neurogenesis. The overall brain transcriptome changes in these patients were independent of histological manifestation of HIV-1 encephalitis and brain virus burdens. Depending on treatment compliance, brain transcriptomes from patients on ART had 83% to 93% fewer dysregulated genes and significantly lower dysregulation of biological pathways compared to untreated patients, with particular improvement indicated for nervous system functions. However a core of about 100 genes remained similarly dysregulated in both treated and untreated patient brain tissues. These genes participate in adaptive immune responses, and in interferon, cell cycle, and myelin pathways. Fluctuations of cellular gene expression in the brain correlated in Pearson's formula analysis with plasma but not brain virus burden. Our results define for the first time an aberrant genome-wide brain transcriptome of untreated HAND and they suggest that antiretroviral treatment can be broadly effective in reducing pathophysiological changes in the brain associated with HAND. Aberrantly expressed transcripts common to untreated and treated HAND may contribute to neurocognitive changes defying ART.


Asunto(s)
Complejo SIDA Demencia/fisiopatología , Antirretrovirales/uso terapéutico , Encéfalo/metabolismo , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , VIH-1 , Transcriptoma/efectos de los fármacos , Adulto , Encéfalo/efectos de los fármacos , Encéfalo/virología , Femenino , Perfilación de la Expresión Génica , Infecciones por VIH/tratamiento farmacológico , Humanos , Masculino , Persona de Mediana Edad
13.
PLoS Pathog ; 7(5): e1002041, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21625575

RESUMEN

Immunodominance in T cell responses to complex antigens like viruses is still incompletely understood. Some data indicate that the dominant responses to viruses are not necessarily the most protective, while other data imply that dominant responses are the most important. The issue is of considerable importance to the rational design of vaccines, particularly against variable escaping viruses like human immunodeficiency virus type 1 and hepatitis C virus. Here, we showed that sequential inactivation of dominant epitopes up-ranks the remaining subdominant determinants. Importantly, we demonstrated that subdominant epitopes can induce robust responses and protect against whole viruses if they are allowed at least once in the vaccination regimen to locally or temporally dominate T cell induction. Therefore, refocusing T cell immune responses away from highly variable determinants recognized during natural virus infection towards subdominant, but conserved regions is possible and merits evaluation in humans.


Asunto(s)
Vacunas contra el SIDA/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Epítopos de Linfocito T/inmunología , VIH-1/inmunología , Epítopos Inmunodominantes/inmunología , Animales , Citocinas/análisis , Femenino , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa
14.
Sci Rep ; 13(1): 6577, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085605

RESUMEN

HIV enters the brain within days of infection causing neurocognitive impairment (NCI) in up to half of infected people despite suppressive antiretroviral therapy. The virus is believed to enter the brain in infected monocytes through chemotaxis to the major monocyte chemokine, CCL2, but the roles of CCL2 in established NCI are not fully defined. We addressed this question during infection of conventional and CCL2 knockout mice with EcoHIV in which NCI can be verified in behavioral tests. EcoHIV enters mouse brain within 5 days of infection, but NCI develops gradually with established cognitive disease starting 25 days after infection. CCL2 knockout mice infected by intraperitoneal injection of virus failed to develop brain infection and NCI. However, when EcoHIV was directly injected into the brain, CCL2 knockout mice developed NCI. Knockout of CCL2 or its principal receptor, CCR2, slightly reduced macrophage infection in culture. Treatment of mice prior to and during EcoHIV infection with the CCL2 transcriptional inhibitor, bindarit, prevented brain infection and NCI and reduced macrophage infection. In contrast, bindarit treatment of mice 4 weeks after infection affected neither brain virus burden nor NCI. Based on these findings we propose that HIV enters the brain mainly through infected monocytes but that resident brain cells are sufficient to maintain NCI. These findings suggest that NCI therapy must act within the brain.


Asunto(s)
Complejo SIDA Demencia , Quimiocina CCL2 , Infecciones por VIH , Animales , Ratones , Complejo SIDA Demencia/genética , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Cognición , Infecciones por VIH/complicaciones , Infecciones por VIH/genética , Indazoles , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos , Receptores CCR2/genética , Modelos Animales de Enfermedad
15.
STAR Protoc ; 4(3): 102368, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37342907

RESUMEN

EcoHIV is a model of HIV infection that recapitulates aspects of HIV-1 pathology in mice. However, there are limited published protocols to guide EcoHIV virion production. Here, we present a protocol for producing infective EcoHIV virions and essential quality controls. We describe steps for viral purification, titering, and multiple techniques to analyze infection efficacy. This protocol produces high infectivity in C57BL/6 mice which will aid investigators in generating preclinical data.


Asunto(s)
Infecciones por VIH , VIH-1 , Animales , Ratones , Ratones Endogámicos C57BL , Virión
16.
Brain Behav Immun Health ; 23: 100478, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35734753

RESUMEN

Combined antiretroviral therapy ushered an era of survivable HIV infection in which people living with HIV (PLH) conduct normal life activities and enjoy measurably extended lifespans. However, despite viral control, PLH often experience a variety of cognitive, emotional, and physical phenotypes that diminish their quality of life, including cognitive impairment, depression, and sleep disruption. Recently, accumulating evidence has linked persistent CNS immune activation to the overproduction of glutamate and upregulation of glutaminase (GLS) activity, particularly in microglial cells, driving glutamatergic imbalance with neurological consequences. Our lab has developed a brain-penetrant prodrug of the glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON), JHU083, that potently inhibits brain GLS activity in mice following oral administration. To assess the therapeutic potential of JHU083, we infected mice with EcoHIV and characterized their neurobehavioral phenotypes. EcoHIV-infected mice exhibited decreased social interaction, suppressed sucrose preference, disrupted sleep during the early rest period, and increased sleep fragmentation, similar to what has been reported in PLH but not yet observed in murine models. At doses shown to inhibit microglial GLS, JHU083 treatment ameliorated all of the abnormal neurobehavioral phenotypes. To explore potential mechanisms underlying this effect, hippocampal microglia were isolated for RNA sequencing. The dysregulated genes and pathways in EcoHIV-infected hippocampal microglia pointed to disruptions in immune functions of these cells, which were partially restored by JHU083 treatment. These findings suggest that upregulation of microglial GLS may affect immune functions of these cells. Thus, brain-penetrable GLS inhibitors like JHU083 could act as a potential therapeutic modality for both glutamate excitotoxicity and aberrant immune activation in microglia in chronic HIV infection.

17.
Front Immunol ; 13: 1004985, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275760

RESUMEN

Thirty-eight million people worldwide are living with HIV, PWH, a major public health problem. Antiretroviral therapy (ART) revolutionized HIV treatment and significantly increased the lifespan of PWH. However, approximately 15-50% of PWH develop HIV associated neurocognitive disorders (HIV-NCI), a spectrum of cognitive deficits, that negatively impact quality of life. Many PWH also have opioid use disorder (OUD), and studies in animal models of HIV infection as well as in PWH suggest that OUD can contribute to HIV-NCI. The synthetic opioid agonist, buprenorphine, treats OUD but its effects on HIV-NCI are unclear. We reported that human mature inflammatory monocytes express the opioid receptors MOR and KOR, and that buprenorphine reduces important steps in monocyte transmigration. Monocytes also serve as HIV reservoirs despite effective ART, enter the brain, and contribute to HIV brain disease. Using EcoHIV infected mice, an established model of HIV infection and HIV-NCI, we previously showed that pretreatment of mice prior to EcoHIV infection reduces mouse monocyte entry into the brain and prevents NCI. Here we show that buprenorphine treatment of EcoHIV infected mice with already established chronic NCI completely reverses the disease. Disease reversal was associated with a significant reduction in brain inflammatory monocytes and reversal of dendritic injury in the cortex and hippocampus. These results suggest that HIV-NCI persistence may require a continuing influx of inflammatory monocytes into the brain. Thus, we recommend buprenorphine as a potential therapy for mitigation of HIV brain disease in PWH with or without OUD.


Asunto(s)
Encefalopatías , Buprenorfina , Infecciones por VIH , Trastornos Relacionados con Opioides , Animales , Humanos , Ratones , Buprenorfina/farmacología , Buprenorfina/uso terapéutico , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Analgésicos Opioides/uso terapéutico , Calidad de Vida , Trastornos Relacionados con Opioides/complicaciones , Receptores Opioides
18.
J Leukoc Biol ; 109(3): 675-681, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32578908

RESUMEN

Approximately 15-40% of people living with HIV develop HIV-associated neurocognitive disorders, HAND, despite successful antiretroviral therapy. There are no therapies to treat these disorders. HIV enters the CNS early after infection, in part by transmigration of infected monocytes. Currently, there is a major opioid epidemic in the United States. Opioid use disorder in the context of HIV infection is important because studies show that opioids exacerbate HIV-mediated neuroinflammation that may contribute to more severe cognitive deficits. Buprenorphine is an opioid derivate commonly prescribed for opiate agonist treatment. We used the EcoHIV mouse model to study the effects of buprenorphine on cognitive impairment and to correlate these with monocyte migration into the CNS. We show that buprenorphine treatment prior to mouse EcoHIV infection prevents the development of cognitive impairment, in part, by decreased accumulation of monocytes in the brain. We propose that buprenorphine has a novel therapeutic benefit of limiting the development of neurocognitive impairment in HIV-infected opioid abusers as well as in nonabusers, in addition to decreasing the use of harmful opioids. Buprenorphine may also be used in combination with HIV prevention strategies such as pre-exposure prophylaxis because of its safety profile.


Asunto(s)
Complejo SIDA Demencia/prevención & control , Buprenorfina/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Complejo SIDA Demencia/complicaciones , Complejo SIDA Demencia/virología , Animales , Antígenos Ly/metabolismo , Encéfalo/patología , Buprenorfina/farmacología , Enfermedad Crónica , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/virología , Modelos Animales de Enfermedad , Inflamación/patología , Masculino , Ratones Endogámicos C57BL , Monocitos/efectos de los fármacos , Fenotipo , Carga Viral/efectos de los fármacos
19.
J Gen Virol ; 91(Pt 6): 1503-13, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20147519

RESUMEN

At the cellular level, cells infected with human immunodeficiency virus type 1 (HIV-1) exhibit immunity to a second infection by the virus that initiated the first infection or by related viruses [superinfection resistance (SIR)]. In the case of HIV infection, SIR was basically attributed to downregulation of the CD4 receptors. We have recently reported on an interaction between HIV-1 Rev and integrase (IN) proteins, which results in inhibition of IN activity in vitro and integration of cDNA in HIV-1-infected cells. A novel function for the viral Rev protein in controlling integration of HIV cDNAs was thus proposed. The results of the present work suggest involvement of the inhibitory Rev in sustaining SIR. A single exposure to wild-type HIV-1 resulted in one to two integrations per cell. The number of integrated proviral cDNA copies remained at this low level even after double infection or superinfection. SIR was dependent on Rev expression by the strain used for the first infection and was eliminated by peptides that disrupt intracellular complex formation between IN and Rev. The same lack of resistance was observed in the absence of Rev, namely following first infection with a DeltaRev HIV strain. The involvement of Rev, expressed from either unintegrated or integrated viral cDNA, in promoting SIR was clearly demonstrated. We conclude that SIR involves Rev-dependent control of HIV cDNA integration.


Asunto(s)
Productos del Gen rev/fisiología , VIH-1/fisiología , Integración Viral , Línea Celular , Integrasa de VIH/metabolismo , Humanos , Unión Proteica
20.
Eur J Immunol ; 39(7): 1831-40, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19585509

RESUMEN

Novel candidate HIV-1 vaccines have been constructed, which are tailor-designed for HLA-B*5101(+) patients infected with HIV-1 clade B. These vaccines employ novel immunogen HIVB-B*5101 derived from consensus HIV-1 clade B Gag p17 and p24 regions coupled to two Pol-derived B*5101-restricted epitopes, which are together with a third B*5101 epitope in Gag dominant in HIV-1-infected long-term non-progressing patients. Both plasmid DNA and modified vaccinia virus Ankara (MVA) vectors supported high expression levels of the HIVB-B*5101 immunogen in cultured cells. Heterologous DNA prime-recombinant MVA boost regimen induced efficiently HIV-1-specific CD8(+) T-cell responses in BALB/c mice. These vaccine-elicited T cells were multifunctional, killed efficiently target cells in vivo, and protected mice against challenge with ecotropic HIV-1/NL4-3 and ecotropic HIV-1/NDK chimaeric viruses with HIV-1 clade B or D backbones, respectively, and ecotropic murine leukemia virus gp80 envelope, and therefore did so in the absence of anti-HIV-1 gp120 antibodies. These results support further development of HIVB-B*5101 vaccines in combined heterologous-modality regimens. The use of allele-specific vaccines in humans is discussed in the context of other developments in the HIV-1 field.


Asunto(s)
Vacunas contra el SIDA/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Antígenos HLA-B/inmunología , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/genética , Secuencia de Aminoácidos , Animales , Western Blotting , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , ADN Recombinante/genética , Epítopos/genética , Epítopos/inmunología , Femenino , Citometría de Flujo , Proteínas de Fusión gag-pol/genética , Proteínas de Fusión gag-pol/inmunología , Antígenos VIH/genética , Antígenos VIH/inmunología , Proteína p24 del Núcleo del VIH/genética , Proteína p24 del Núcleo del VIH/inmunología , Infecciones por VIH/prevención & control , Infecciones por VIH/virología , VIH-1/genética , Humanos , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos CBA , Factor de Necrosis Tumoral alfa/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA