Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 55(6): 895-908, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18494853

RESUMEN

SUMMARY: Upon blockage of chromosomal replication by DNA lesions, Y-family polymerases interact with monoubiquitylated proliferating cell nuclear antigen (PCNA) to catalyse translesion synthesis (TLS) and restore replication fork progression. Here, we assessed the roles of Arabidopsis thaliana POLH, which encodes a homologue of Y-family polymerase eta (Poleta), PCNA1 and PCNA2 in TLS-mediated UV resistance. A T-DNA insertion in POLH sensitized the growth of roots and whole plants to UV radiation, indicating that AtPoleta contributes to UV resistance. POLH alone did not complement the UV sensitivity conferred by deletion of yeast RAD30, which encodes Poleta, although AtPoleta exhibited cyclobutane dimer bypass activity in vitro, and interacted with yeast PCNA, as well as with Arabidopsis PCNA1 and PCNA2. Co-expression of POLH and PCNA2, but not PCNA1, restored normal UV resistance and mutation kinetics in the rad30 mutant. A single residue difference at site 201, which lies adjacent to the residue (lysine 164) ubiquitylated in PCNA, appeared responsible for the inability of PCNA1 to function with AtPoleta in UV-treated yeast. PCNA-interacting protein boxes and an ubiquitin-binding motif in AtPoleta were found to be required for the restoration of UV resistance in the rad30 mutant by POLH and PCNA2. These observations indicate that AtPoleta can catalyse TLS past UV-induced DNA damage, and links the biological activity of AtPoleta in UV-irradiated cells to PCNA2 and PCNA- and ubiquitin-binding motifs in AtPoleta.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Clonación Molecular , Daño del ADN , Replicación del ADN , ADN Bacteriano/genética , ADN Complementario/genética , ADN Polimerasa Dirigida por ADN/genética , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de la radiación , ARN de Planta/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Técnicas del Sistema de Dos Híbridos , Rayos Ultravioleta
2.
Int Rev Cytol ; 255: 1-40, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17178464

RESUMEN

Increased incident ultraviolet (UV) radiation due to ozone depletion has heightened interest in plant responses to UV because solar UV wavelengths can reduce plant genome stability, growth, and productivity. These detrimental effects result from damage to cell components including nucleic acids, proteins, and membrane lipids. As obligate phototrophs, plants must counter the onslaught of cellular damage due to prolonged exposure to sunlight. They do so by attenuating the UV dose received through accumulation of UV-absorbing secondary metabolites, neutralizing reactive oxygen species produced by UV, monomerizing UV-induced pyrimidine dimers by photoreactivation, extracting UV photoproducts from DNA via nucleotide excision repair, and perhaps transiently tolerating the presence of DNA lesions via replicative bypass of the damage. The signaling mechanisms controlling these responses suggest that UV exposure also may be beneficial to plants by increasing cellular immunity to pathogens. Indeed, pathogen resistance can be enhanced by UV treatment, and recent experiments suggest DNA damage and its processing may have a role.


Asunto(s)
Hongos/patogenicidad , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Virus de Plantas/patogenicidad , Plantas/efectos de la radiación , Rayos Ultravioleta , Daño del ADN , Reparación del ADN , ADN de Plantas/metabolismo , ADN de Plantas/efectos de la radiación , Desoxirribodipirimidina Fotoliasa/metabolismo , Radicales Libres/metabolismo , Hongos/efectos de la radiación , Inmunidad Innata , Peroxidación de Lípido , Lípidos de la Membrana/metabolismo , Lípidos de la Membrana/efectos de la radiación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/efectos de la radiación , Virus de Plantas/efectos de la radiación , Plantas/genética , Plantas/inmunología , Plantas/metabolismo , Tolerancia a Radiación
3.
Environ Mol Mutagen ; 45(2-3): 115-27, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15645454

RESUMEN

As obligate phototrophs, and despite shielding strategies, plants sustain DNA damage caused by UV radiation in sunlight. By inhibiting DNA replication and transcription, such damage may contribute to the detrimental effects of UV radiation on the growth, productivity, and genetic stability of higher plants. However, there is evidence that plants can reverse UV-induced DNA damage by photoreactivation or remove it via nucleotide excision repair. In addition, plants may have mechanisms for tolerating UV photoproducts as a means of avoiding replicative arrest. Recently, phenotypic characterization of plant mutants, functional complementation studies, and cDNA analysis have implicated genes isolated from the model plant Arabidopsis thaliana in nucleotide excision repair or tolerance of UV-induced DNA damage. Here, we briefly review features of these processes in human cells, collate information on Arabidopsis homologs of the relevant genes, and summarize the experimental findings that link certain of these plant genes to nucleotide excision repair or damage tolerance.


Asunto(s)
Arabidopsis/genética , Daño del ADN/genética , Reparación del ADN/fisiología , Rayos Ultravioleta , Células Cultivadas , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN/genética , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Humanos , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Factor de Transcripción TFIIH , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo
4.
Gene ; 296(1-2): 1-9, 2002 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-12383497

RESUMEN

The Saccharomyces cerevisiae RAD1 and human XPF genes encode a subunit of a nucleotide excision repair endonuclease that also is implicated in some forms of homologous recombination. An Arabidopsis thaliana gene (AtRAD1) encoding the orthologous plant protein has been identified recently. Here we report the isolation of three structurally distinct AtRAD1 cDNAs from A. thaliana leaf tissue RNA. One of the isolates (AtRAD1-1) corresponds to the cDNA previously shown to encode the full-length AtRad1 protein, whereas the other two (AtRAD1-2, AtRAD1-3) differ slightly in size due to variations at the 5' end of exon 6 or the 3' end of exon 7, respectively. The sequence differences argue that these cDNAs were probably templated by mRNAs generated via alternative splicing. Diagnostic polymerase chain reaction pointed to the presence of the AtRAD1-1 and AtRAD1-2 but not AtRAD1-3 transcripts in bud and root tissue, and to a fourth transcript (AtRAD1-4), having both alterations identified in AtRAD1-2 and AtRAD1-3, in root tissue. However, the low frequency of detection of AtRAD1-3 and AtRAD1-4 makes the significance of these tissue-specific patterns unclear. The predicted AtRad1-2, AtRad1-3 and AtRad1-4 proteins lack part of the region likely required for endonuclease complex formation. Expression of AtRAD1-2 and AtRAD1-3 in a yeast rad1 mutant did not complement the sensitivity to ultraviolet radiation or the recombination defect associated with the rad1 mutation. These results suggest that alternative splicing may modulate the levels of functional AtRad1 protein.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión al ADN , Endonucleasas/genética , Saccharomyces cerevisiae/genética , Empalme Alternativo , Secuencia de Aminoácidos , Secuencia de Bases , División Celular/genética , División Celular/efectos de la radiación , Enzimas Reparadoras del ADN , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Relación Dosis-Respuesta en la Radiación , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Rayos Ultravioleta
5.
Plant J ; 46(3): 512-21, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16623910

RESUMEN

Eukaryotic general transcription factor (TF) IIH is composed of 10 proteins, seven of which are also required for nucleotide excision repair (NER) of UV radiation-induced DNA damage in human cells and yeast. Plant homologues of the human TFIIH subunits XPB and XPD that function in NER have been isolated but none has been shown to operate in transcription. Here we address the capabilities of Arabidopsis thaliana AtGTF2H2 and AtXPD, homologues of the essential interacting human/yeast TFIIH components p44/Ssl1 and XPD/Rad3, respectively. Expression of AtGTF2H2 or AtXPD cDNAs in yeast ssl1 or rad3 mutants temperature-sensitive for growth due to thermolabile transcription of mRNA restored growth and so transcription at the non-permissive temperature. AtGTF2H2 also complemented the NER deficiency of the corresponding yeast mutant, as measured by full recovery of UV resistance, whereas AtXPD did not despite being necessary for NER in Arabidopsis. UV treatment did not upregulate transcription of AtGTF2H2 or AtXPD in Arabidopsis. Suppression of a yeast translation initiation defect by the ssl1-1 mutation was prevented by expression of AtGTF2H2. Deletion of SSL1 in a yeast strain expressing AtGTF2H2 did not affect growth or confer UV sensitivity, demonstrating that AtGTF2H2 can perform all essential transcription functions and UV damage repair duties of Ssl1 in its absence. Furthermore, AtGTF2H2 interacted with AtXPD and yeast Rad3, and AtXPD also interacted with yeast Ssl1 in two-hybrid assays. Our results indicate that AtGTF2H2 can act in transcription and NER, and suggest that it participates in both processes in Arabidopsis as part of TFIIH.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Reparación del ADN/genética , Factores de Transcripción/fisiología , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia Conservada , ADN Helicasas/metabolismo , Regulación de la Expresión Génica , Prueba de Complementación Genética , Humanos , Datos de Secuencia Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Factor de Transcripción TFIIH , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA