Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Physiol Biochem ; 46(6): 2601-2615, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29763890

RESUMEN

BACKGROUND/AIMS: MiRNA-301a-3p is an oncogenic miRNA whose expression is associated with tumor development, metastases and overall poor prognosis. Estrogen receptor α (ERα) is one of the estrogen hormone-activated transcription factors, which regulates a large number of genes and is involved in the mammary gland development. Expression of ERα is considered to be a good indicator for endocrine therapy and breast cancer survival. Loss of ERα in breast cancer patients indicates invasiveness and poor prognosis. In this study, we focus on the regulation of ERα by miR-301a and its role in transition from estrogen-dependent to estrogen-independent breast cancer. METHODS: Expression of miR-301a-3p was measured by qRT-PCR in tumor tissue samples from 111 patients with primary breast carcinoma and in mammospheres representing in vitro model of cancer stem-like cells. Dual reporter luciferase assay and complementary experiments were performed to validate ESR1 as a direct target of miR-301a-3p. The effect of miR-301a-3p on estrogen signaling was evaluated on the level of gene and protein expression and growth response to estrogens. Finally, the effect of miR-301a-3p expression on tumor growth was studied in nude mice. RESULTS: We identified ESR1 as a direct target of miR-301a-3p. Ectopic miR-301a-3p causes a decrease in ESR1 mRNA and protein level and modulates the expression of ERα target genes in ERα positive breast cancer cells. Consistently, miR-301a-3p causes a decrease in sensitivity of MCF7 cells to 17ß-estradiol and inhibits the growth of estrogen dependent tumor in nude mice. Yet, the mice tumors have significantly increased expression of genes related to cancer stem-like cells and epithelial to mesenchymal transition suggesting enrichment of the population of cells with more invasive properties, in line with our observation that miR-301a-3p expression is highly increased in mammospheres which show a decrease in estrogenic signaling. Importantly, miR-301a-3P level is also increased in primary breast cancer samples exhibiting an ER/PR negative phenotype. CONCLUSION: Our results confirm ESR1 as a direct target of miR-301a-3p and suggest that miR-301a-3p likely contributes to development of estrogen independence, which leads to a more invasive phenotype of breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Regiones no Traducidas 3' , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Receptor alfa de Estrógeno/análisis , Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Femenino , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Transducción de Señal
2.
Antioxid Redox Signal ; 26(2): 84-103, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-27392540

RESUMEN

AIMS: Expression of the HER2 oncogene in breast cancer is associated with resistance to treatment, and Her2 may regulate bioenergetics. Therefore, we investigated whether disruption of the electron transport chain (ETC) is a viable strategy to eliminate Her2high disease. RESULTS: We demonstrate that Her2high cells and tumors have increased assembly of respiratory supercomplexes (SCs) and increased complex I-driven respiration in vitro and in vivo. They are also highly sensitive to MitoTam, a novel mitochondrial-targeted derivative of tamoxifen. Unlike tamoxifen, MitoTam efficiently suppresses experimental Her2high tumors without systemic toxicity. Mechanistically, MitoTam inhibits complex I-driven respiration and disrupts respiratory SCs in Her2high background in vitro and in vivo, leading to elevated reactive oxygen species production and cell death. Intriguingly, higher sensitivity of Her2high cells to MitoTam is dependent on the mitochondrial fraction of Her2. INNOVATION: Oncogenes such as HER2 can restructure ETC, creating a previously unrecognized therapeutic vulnerability exploitable by SC-disrupting agents such as MitoTam. CONCLUSION: We propose that the ETC is a suitable therapeutic target in Her2high disease. Antioxid. Redox Signal. 26, 84-103.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Receptor ErbB-2/metabolismo , Antineoplásicos/química , Biomarcadores , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Respiración de la Célula/efectos de los fármacos , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Proteínas del Complejo de Cadena de Transporte de Electrón/química , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Femenino , Humanos , Concentración 50 Inhibidora , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Moleculares , Conformación Molecular , Terapia Molecular Dirigida , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Receptor ErbB-2/antagonistas & inhibidores , Tamoxifeno/farmacología
3.
Methods Mol Biol ; 1265: 195-208, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25634277

RESUMEN

The mitochondrial respiratory chain is organized into dynamic high molecular weight complexes that associate to form supercomplexes. The function of these SCs is to minimize the production of reactive oxygen species (ROS) generated during electron transfer within them and to efficiently transfer electrons to complex IV. These supra-molecular structures as well as whole mitochondria are stress-responsive and respond to mitochondrially targeted anti-cancer agent by destabilization and induction of massive production of ROS leading to apoptosis. We have recently developed mitochondrially targeted anti-cancer agents epitomized by the mitochondrially targeted analogue of the redox-silent compound vitamin E succinate, which belongs to the group of agents that kill cancer cells via their mitochondria-destabilizing activity, referred to as mitocans. To understand the molecular mechanism of the effect of such agents, the use of native blue gel electrophoresis and clear native electrophoresis coupled with in-gel activity assays, are methods of choice. The relevant methodology is described in this chapter.


Asunto(s)
Antineoplásicos/farmacología , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fraccionamiento Celular , Transporte de Electrón/efectos de los fármacos , Humanos , Proteínas Mitocondriales/metabolismo
4.
Antioxid Redox Signal ; 22(11): 883-900, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25578105

RESUMEN

AIMS: To assess the effect of mitochondrially targeted vitamin E (VE) analogs on mitochondrial function and biogenesis. RESULTS: Mitochondrially targeted vitamin E succinate (MitoVES) is an efficient inducer of apoptosis in cancer cells. Here, we show that unlike its untargeted counterpart α-tocopheryl succinate, MitoVES suppresses proliferation of cancer cells at sub-apoptotic doses by way of affecting the mitochondrial DNA (mtDNA) transcripts. We found that MitoVES strongly suppresses the level of the displacement loop transcript followed by those of mtDNA genes coding for subunits of mitochondrial complexes. This process is coupled to the inhibition of mitochondrial respiration, dissipation of the mitochondrial membrane potential, and generation of reactive oxygen species. In addition, exposure of cancer cells to MitoVES led to decreased expression of TFAM and diminished mitochondrial biogenesis. The inhibition of mitochondrial transcription was replicated in vivo in a mouse model of HER2(high) breast cancer, where MitoVES lowered the level of mtDNA transcripts in cancer cells but not in normal tissue. INNOVATION: Our data show that mitochondrially targeted VE analogs represent a novel class of mitocans that not only induce apoptosis at higher concentrations but also block proliferation and suppress normal mitochondrial function and transcription at low, non-apoptogenic doses. CONCLUSIONS: Our data indicate a novel, selective anti-cancer activity of compounds that act by targeting mitochondria of cancer cells, inducing significant alterations in mitochondrial function associated with transcription of mtDNA-coded genes. These changes subsequently result in the arrest of cell proliferation.


Asunto(s)
ADN Mitocondrial/metabolismo , Mitocondrias/efectos de los fármacos , Receptor ErbB-2/genética , alfa-Tocoferol/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Transgénicos , Mitocondrias/fisiología , Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
5.
Cell Metab ; 21(1): 81-94, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25565207

RESUMEN

We report that tumor cells without mitochondrial DNA (mtDNA) show delayed tumor growth, and that tumor formation is associated with acquisition of mtDNA from host cells. This leads to partial recovery of mitochondrial function in cells derived from primary tumors grown from cells without mtDNA and a shorter lag in tumor growth. Cell lines from circulating tumor cells showed further recovery of mitochondrial respiration and an intermediate lag to tumor growth, while cells from lung metastases exhibited full restoration of respiratory function and no lag in tumor growth. Stepwise assembly of mitochondrial respiratory (super)complexes was correlated with acquisition of respiratory function. Our findings indicate horizontal transfer of mtDNA from host cells in the tumor microenvironment to tumor cells with compromised respiratory function to re-establish respiration and tumor-initiating efficacy. These results suggest pathophysiological processes for overcoming mtDNA damage and support the notion of high plasticity of malignant cells.


Asunto(s)
Mitocondrias/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Citrato (si)-Sintasa/metabolismo , ADN Mitocondrial/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Metabolismo Energético , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Melanoma Experimental/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Mitocondrias/genética , Mitocondrias/ultraestructura , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Trasplante Homólogo
6.
Redox Rep ; 19(1): 16-25, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24225203

RESUMEN

UNLABELLED: Malignant mesothelioma (MM) is a fatal neoplastic disease with no therapeutic option. Therefore, the search for novel therapies is of paramount importance. METHODS: Since mitochondrial targeting of α-tocopheryl succinate (α-TOS) by its tagging with triphenylphosphonium enhances its cytotoxic effects to cancer cells, we tested its effect on MM cells and experimental mesotheliomas. RESULTS: Mitochondrially targeted vitamin E succinate (MitoVES) was more efficient in killing MM cells than α-TOS with IC50 lower by up to two orders of magnitude. Mitochondrial association of MitoVES in MM cells was documented using its fluorescently tagged analogue. MitoVES caused apoptosis in MM cells by mitochondrial destabilization, resulting in the loss of mitochondrial membrane potential, generation of reactive oxygen species, and destabilization of respiratory supercomplexes. The role of the mitochondrial complex II in the activity of MitoVES was confirmed by the finding that MM cells with suppressed succinate quinone reductase were resistant to MitoVES. MitoVES suppressed mesothelioma growth in nude mice with high efficacy. DISCUSSION: MitoVES is more efficient in killing MM cells and suppressing experimental mesotheliomas compared with the non-targeted α-TOS, giving it a potential clinical benefit.


Asunto(s)
Antineoplásicos/uso terapéutico , Mesotelioma/tratamiento farmacológico , alfa-Tocoferol/análogos & derivados , alfa-Tocoferol/uso terapéutico , Animales , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Complejo II de Transporte de Electrones/antagonistas & inhibidores , Complejo II de Transporte de Electrones/genética , Humanos , Concentración 50 Inhibidora , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mesotelioma/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mitocondrias/metabolismo , Estructura Molecular , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , alfa-Tocoferol/farmacocinética
7.
Fitoterapia ; 83(6): 1000-7, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22698713

RESUMEN

Flavone eupatorin is one of the constituents of Orthosiphon stamineus, a medicinal herb used in folk medicine in South East Asia for treatment of various disorders. In our study, we investigated the antiproliferative properties of a chloroform extract of the leaves of O. stamineus and of pure eupatorin. The compound was able to reduce the number of viable cancer cells to the same extent as the extract, with IC(50) values in micromolar range. Moreover, both the eupatorin standard and the extract caused cells to arrest in the G2/M phase of the cell cycle. This clearly demonstrates that eupatorin contributes significantly to the overall extract activity. Induction of mitotic catastrophe, accompanied by key molecular events defining apoptosis, is the mechanism of eupatorin-induced cell death. Importantly, eupatorin (at the doses cytotoxic to cancer cells) did not kill normal cells; it only limited migration of HUVEC endothelial cells and their ability to create tubes. The ability of eupatorin to nonspecifically inhibit many protein kinases was proven and is the probable cause of its cellular effects. In summary, eupatorin emerges as a promising agent in anticancer research.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Antineoplásicos Fitogénicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Flavonoides/uso terapéutico , Orthosiphon/química , Fitoterapia , Extractos Vegetales/uso terapéutico , Inhibidores de la Angiogénesis/farmacología , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Flavonas/farmacología , Flavonas/uso terapéutico , Flavonoides/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Concentración 50 Inhibidora , Extractos Vegetales/farmacología , Hojas de la Planta , Proteínas Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA