Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 14(3): 1674-80, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24524682

RESUMEN

Membrane proteins are prime drug targets as they control the transit of information, ions, and solutes across membranes. Here, we present a membrane-on-nanopore platform to analyze nonelectrogenic channels and transporters that are typically not accessible by electrophysiological methods in a multiplexed manner. The silicon chip contains 250,000 femtoliter cavities, closed by a silicon dioxide top layer with defined nanopores. Lipid vesicles containing membrane proteins of interest are spread onto the nanopore-chip surface. Transport events of ligand-gated channels were recorded at single-molecule resolution by high-parallel fluorescence decoding.

2.
Chem Biodivers ; 10(1): 1-38, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23341206

RESUMEN

After a survey of the special role, which the amino acid proline plays in the chemistry of life, the cell-penetrating properties of polycationic proline-containing peptides are discussed, and the widely unknown discovery by the Giralt group (J. Am. Chem. Soc. 2002, 124, 8876) is acknowledged, according to which fluorescein-labeled tetradecaproline is slowly taken up by rat kidney cells (NRK-49F). Here, we describe details of our previously mentioned (Chem. Biodiversity 2004, 1, 1111) observation that a hexa-ß(3)-Pro derivative penetrates fibroblast cells, and we present the results of an extensive investigation of oligo-L- and oligo-D-α-prolines, as well as of oligo-ß(2)h- and oligo-ß(3)h-prolines without and with fluorescence labels (1-8; Fig. 1). Permeation through protein-free phospholipid bilayers is detected with the nanoFAST biochip technology (Figs. 2-4). This methodology is applied for the first time for quantitative determination of translocation rates of cell-penetrating peptides (CPPs) across lipid bilayers. Cell penetration is observed with mouse (3T3) and human foreskin fibroblasts (HFF; Figs. 5 and 6-8, resp.). The stabilities of oligoprolines in heparin-stabilized human plasma increase with decreasing chain lengths (Figs. 9-11). Time- and solvent-dependent CD spectra of most of the oligoprolines (Figs. 13 and 14) show changes that may be interpreted as arising from aggregation, and broadening of the NMR signals with time confirms this assumption.


Asunto(s)
Péptidos de Penetración Celular/química , Membrana Dobles de Lípidos/metabolismo , Oligopéptidos/química , Células 3T3 , Animales , Línea Celular , Permeabilidad de la Membrana Celular/efectos de los fármacos , Péptidos de Penetración Celular/sangre , Péptidos de Penetración Celular/farmacología , Dicroismo Circular , Fluoresceína/química , Semivida , Humanos , Membrana Dobles de Lípidos/química , Ratones , Nanotecnología , Oligopéptidos/sangre , Oligopéptidos/farmacología , Estructura Secundaria de Proteína , Ratas , Solventes/química , Factores de Tiempo
3.
J Biol Chem ; 285(14): 10318-27, 2010 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-20097755

RESUMEN

KtrB, the K(+)-translocating subunit of the Na(+)-dependent bacterial K(+) uptake system KtrAB, consists of four M(1)PM(2) domains, in which M(1) and M(2) are transmembrane helices and P indicates a p-loop that folds back from the external medium into the cell membrane. The transmembrane stretch M(2C) is, with its 40 residues, unusually long. It consists of three parts, the hydrophobic helices M(2C1) and M(2C3), which are connected by a nonhelical M(2C2) region, containing conserved glycine, alanine, serine, threonine, and lysine residues. Several point mutations in M(2C2) led to a huge gain of function of K(+) uptake by KtrB from the bacterium Vibrio alginolyticus. This effect was exclusively due to an increase in V(max) for K(+) transport. Na(+) translocation by KtrB was not affected. Partial to complete deletions of M(2C2) also led to enhanced V(max) values for K(+) uptake via KtrB. However, several deletion variants also exhibited higher K(m) values for K(+) uptake and at least one deletion variant, KtrB(Delta326-328), also transported Na(+) faster. The presence of KtrA did not suppress any of these effects. For the deletion variants, this was due to a diminished binding of KtrA to KtrB. PhoA studies indicated that M(2C2) forms a flexible structure within the membrane allowing M(2C3) to be directed either to the cytoplasm or (artificially) to the periplasm. These data are interpreted to mean (i) that region M(2C2) forms a flexible gate controlling K(+) translocation at the cytoplasmic side of KtrB, and (ii) that M(2C2) is required for the interaction between KtrA and KtrB.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Membrana Celular/metabolismo , Mutación/genética , Potasio/metabolismo , Vibrio alginolyticus/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Transporte Biológico , Proteínas de Transporte de Catión/química , Escherichia coli/genética , Escherichia coli/metabolismo , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Sodio/metabolismo , Vibrio alginolyticus/genética
4.
J Biol Chem ; 285(36): 28210-9, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20573964

RESUMEN

Transmembrane stretch M(2C) from the bacterial K(+)-translocating protein KtrB is unusually long. In its middle part, termed M(2C2), it contains several small and polar amino acids. This region is flanked by the two alpha-helices M(2C1) and M(2C3) and may form a flexible gate at the cytoplasmic side of the membrane controlling K(+) translocation. In this study, we provide experimental evidence for this notion by using continuous wave and pulse EPR measurements of single and double spin-labeled cysteine variants of KtrB. Most of the spin-labeled residues in M(2C2) were shown to be immobile, pointing to a compact structure. However, the high polarity revealed for the microenvironment of residue positions 317, 318, and 327 indicated the existence of a water-accessible cavity. Upon the addition of K(+) ions, M(2C2) residue Thr-318R1 (R1 indicates the bound spin label) moved with respect to M(2B) residue Asp-222R1 and M(2C3) residue Val-331R1 but not with respect to M(2C1) residue Met-311R1. Based on distances determined between spin-labeled residues of double-labeled variants of KtrB in the presence and absence of K(+) ions, structural models of the open and closed conformations were developed.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Membrana Celular/metabolismo , Potasio/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Transporte Biológico , Proteínas de Transporte de Catión/genética , Polaridad Celular , Cisteína , Espectroscopía de Resonancia por Spin del Electrón , Variación Genética , Modelos Moleculares , Movimiento , Conformación Proteica , Subunidades de Proteína/genética , Marcadores de Spin
5.
J Vis Exp ; (114)2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27584906

RESUMEN

Membrane protein transport on the single protein level still evades detailed analysis, if the substrate translocated is non-electrogenic. Considerable efforts have been made in this field, but techniques enabling automated high-throughput transport analysis in combination with solvent-free lipid bilayer techniques required for the analysis of membrane transporters are rare. This class of transporters however is crucial in cell homeostasis and therefore a key target in drug development and methodologies to gain new insights desperately needed. The here presented manuscript describes the establishment and handling of a novel biochip for the analysis of membrane protein mediated transport processes at single transporter resolution. The biochip is composed of microcavities enclosed by nanopores that is highly parallel in its design and can be produced in industrial grade and quantity. Protein-harboring liposomes can directly be applied to the chip surface forming self-assembled pore-spanning lipid bilayers using SSM-techniques (solid supported lipid membranes). Pore-spanning parts of the membrane are freestanding, providing the interface for substrate translocation into or out of the cavity space, which can be followed by multi-spectral fluorescent readout in real-time. The establishment of standard operating procedures (SOPs) allows the straightforward establishment of protein-harboring lipid bilayers on the chip surface of virtually every membrane protein that can be reconstituted functionally. The sole prerequisite is the establishment of a fluorescent read-out system for non-electrogenic transport substrates. High-content screening applications are accomplishable by the use of automated inverted fluorescent microscopes recording multiple chips in parallel. Large data sets can be analyzed using the freely available custom-designed analysis software. Three-color multi spectral fluorescent read-out furthermore allows for unbiased data discrimination into different event classes, eliminating false positive results. The chip technology is currently based on SiO2 surfaces, but further functionalization using gold-coated chip surfaces is also possible.


Asunto(s)
Transporte Biológico , Membrana Celular/metabolismo , Humanos , Membrana Dobles de Lípidos/metabolismo , Liposomas , Nanoporos , Dióxido de Silicio
6.
Eur J Cell Biol ; 90(9): 696-704, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21680052

RESUMEN

KtrB is the K(+)-translocating subunit of the K(+)-uptake system KtrAB from bacteria. It is a member of the superfamily of K(+)transporters (SKT proteins) with other sub-families occurring in archaea, bacteria, fungi, plants and trypanosomes. SKT proteins may have originated from small K(+) channels by at least two gene duplication and two gene fusion events. They contain four covalently linked M(1)PM(2) domains, in which M(1) and M(2) stand for transmembrane stretches, and P for a P-loop, which folds back from the external medium into the membrane. SKT proteins distinguish themselves in two important aspects from K(+) channels: first, with just one conserved glycine residue in their P-loops they contain a much simpler K(+)-selectivity filter sequence than K(+) channels with their conserved Thr-Val-Gly-Tyr-Gly sequence. Secondly, the middle part M(2C2) from the long transmembrane stretch M(2C) of KtrB from the bacterium Vibrio alginolyticus forms a gate inside the membrane, which prevents K(+) permeation to the cytoplasm. Beside the mechanism of K(+) transport via KtrB and other SKT proteins existing hypotheses of how the KtrA protein regulates the K(+)-transport activity of KtrB are discussed.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Potasio/metabolismo , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Transporte de Proteínas , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo
7.
J Biol Chem ; 280(50): 41146-54, 2005 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-16210320

RESUMEN

The subunit KtrB of bacterial Na+-dependent K+-translocating KtrAB systems belongs to a superfamily of K+ transporters. These proteins contain four repeated domains, each composed of two transmembrane helices connected by a putative pore loop (p-loop). The four p-loops harbor a conserved glycine residue at a position equivalent to a glycine selectivity filter residue in K+ channels. We investigated whether these glycines also form a selectivity filter in KtrB. The single residues Gly70, Gly185, Gly290, and Gly402 from p-loops P(A) to P(D) of Vibrio alginolyticus KtrB were replaced with alanine, serine, or aspartate. The three alanine variants KtrB(A70), KtrB(A185), and KtrB(A290) maintained a substantial activity in KtrAB-mediated K+ uptake in Escherichia coli. This activity was associated with a decrease in the affinity for K+ by 2 orders of magnitude, with little effect on Vmax. Minor activities were also observed for three other variants: KtrB(A402), KtrB(S70), and KtrB(D185). With all of these variants, the property of Na+ dependence of K+ transport was preserved. Only the four serine variants mediated Na+ uptake, and these variants differed considerably in their K+/Na+ selectivity. Experiments on cloned ktrB in the pBAD18 vector showed that V. alginolyticus KtrB alone was still active in E. coli. It mediated Na+-independent, slow, high affinity, and mutation-specific K+ uptake as well as K+-independent Na+ uptake. These data demonstrate that KtrB contains a selectivity filter for K+ ions and that all four conserved p-loop glycine residues are part of this filter. They also indicate that the role of KtrA lies in conferring velocity and ion coupling to the Ktr complex.


Asunto(s)
Proteínas Bacterianas/fisiología , Proteínas de Transporte de Catión/fisiología , Glicina/química , Proteínas de la Membrana/fisiología , Potasio/química , Alanina/química , Secuencia de Aminoácidos , Ácido Aspártico/química , Proteínas Bacterianas/química , Sitios de Unión , Transporte Biológico , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Cationes , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Variación Genética , Glucósidos/química , Iones , Cinética , Proteínas de la Membrana/química , Modelos Biológicos , Datos de Secuencia Molecular , Plásmidos/metabolismo , Canales de Potasio/química , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Serina/química , Sodio/química , Factores de Tiempo , Vibrio alginolyticus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA