Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochemistry (Mosc) ; 89(3): 474-486, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38648767

RESUMEN

Focal adhesions (FAs) are mechanosensory structures that transform physical stimuli into chemical signals guiding cell migration. Comprehensive studies postulate correlation between the FA parameters and cell motility metrics for individual migrating cells. However, which properties of the FAs are critical for epithelial cell motility in a monolayer remains poorly elucidated. We used high-throughput microscopy to describe relationship between the FA parameters and cell migration in immortalized epithelial keratinocytes (HaCaT) and lung carcinoma cells (A549) with depleted or inhibited vinculin and focal adhesion kinase (FAK) FA proteins. To evaluate relationship between the FA morphology and cell migration, we used substrates with varying stiffness in the model of wound healing. Cells cultivated on fibronectin had the highest FA area values, migration rate, and upregulated expression of FAK and vinculin mRNAs, while the smallest FA area and slower migration rate to the wound were specific to cells cultivated on glass. Suppression of vinculin expression in both normal and tumor cells caused decrease of the FA size and fluorescence intensity but did not affect cell migration into the wound. In contrast, downregulation or inactivation of FAK did not affect the FA size but significantly slowed down the wound closure rate by both HaCaT and A549 cell lines. We also showed that the FAK knockdown results in the FA lifetime decrease for the cells cultivated both on glass and fibronectin. Our data indicate that the FA lifetime is the most important parameter defining migration of epithelial cells in a monolayer. The observed change in the cell migration rate in a monolayer caused by changes in expression/activation of FAK kinase makes FAK a promising target for anticancer therapy of lung carcinoma.


Asunto(s)
Movimiento Celular , Vinculina , Humanos , Vinculina/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células A549 , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Adhesiones Focales/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo
2.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36077272

RESUMEN

CD133 is an extensively studied marker of the most malignant tumor cell population, designated as cancer stem cells (CSCs). However, the function of this glycoprotein and its involvement in cell regulatory cascades are still poorly understood. Here we show a positive correlation between the level of CD133 plasma membrane expression and the proliferative activity of cells of the Caco-2, HT-29, and HUH7 cancer cell lines. Despite a substantial difference in the proliferative activities of cell populations with different levels of CD133 expression, transcriptomic and proteomic profiling revealed only minor distinctions between them. Nonetheless, a further in silico assessment of the differentially expressed transcripts and proteins revealed 16 proteins that could be involved in the regulation of CD133 expression; these were assigned ranks reflecting the apparent extent of their involvement. Among them, the TRIM28 transcription factor had the highest rank. The prominent role of TRIM28 in CD133 expression modulation was confirmed experimentally in the Caco2 cell line clones: the knockout, though not the knockdown, of the TRIM28 gene downregulated CD133. These results for the first time highlight an important role of the TRIM28 transcription factor in the regulation of CD133-associated cancer cell heterogeneity.


Asunto(s)
Antígeno AC133/genética , Células Madre Neoplásicas/citología , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Antígeno AC133/metabolismo , Células CACO-2 , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Fenotipo , Proteómica , Factores de Transcripción/metabolismo
3.
Biochim Biophys Acta Rev Cancer ; 1868(2): 372-393, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28669749

RESUMEN

Extracellular vesicle (EV) production is a universal feature of metazoan cells as well as prokaryotes (bMVs - bacterial microvesicles). They are small vesicles with phospholipid membrane carrying proteins, DNA and different classes of RNAs and are heavily involved in intercellular communication acting as vectors of information to target cells. For the last decade, the interest in EV research has exponentially increased though thorough studies of their roles in various pathologies that was not previously possible due to technical limitations. This review focuses on research evaluating the role of EV production in gastrointestinal (GI) cancer development in conjunction with GI microbiota and inflammatory diseases. We also discuss recent studies on the promising role of EVs and their content as biomarkers for early diagnosis of GI cancers. The bMVs have also been implicated in the pathogenesis of GI chronic inflammatory diseases, however, possible role of bMVs in tumorigenesis remains underestimated. We propose that EVs from eukaryotic cells as well as from different microbial, fungi, parasitic species and edible plants in GI tract act as mediators of intracellular and inter-species communication, particularly facilitating tumor cell survival and multi-drug resistance. In conclusion, we suggest that matching sequences from EV proteomes (available from public databases) with known protein sequences of microbiome gut bacteria will be useful in identification of antigen mimicry between evolutionary conservative protein sequences. Using this approach we identified Bacteroides spp. pseudokinase with activation loop and homology to PDGFRα, providing a proof-of-concept strategy. We speculate that existence of microbial pseudokinase that 'mimics' PDGFRα may be related to PDGFRα and Bacteroides spp. roles in colorectal carcinogenesis that require further investigation.


Asunto(s)
Vesículas Extracelulares/fisiología , Microbioma Gastrointestinal/fisiología , Neoplasias Gastrointestinales/etiología , Animales , Comunicación Celular , Humanos , Imitación Molecular , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/fisiología
4.
Biol Cell ; 111(10): 245-261, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31403697

RESUMEN

BACKGROUND INFORMATION: Metastatic disease is caused by the ability of cancer cells to reach distant organs and form secondary lesions at new locations. Dissemination of cancer cells depends on their migration plasticity - an ability to switch between motility modes driven by distinct molecular machineries. One of such switches is mesenchymal-to-amoeboid transition. Although mesenchymal migration of individual cells requires Arp2/3-dependent actin polymerisation, amoeboid migration is characterised by a high level of actomyosin contractility and often involves the formation of membrane blebs. The acquisition of amoeboid motility by mesenchymal cells is often associated with enhanced metastasis. RESULTS: We studied the ability of mesenchymal HT1080 fibrosarcoma cells to switch to amoeboid motility. We induced the transition from lamellipodium-rich to blebbing phenotype either by down-regulating the Arp2/3 complex, pharmacologically or by RNAi, or by decreasing substrate adhesiveness. Each of these treatments induced blebbing in a subset of fibrosarcoma cells, but not in normal subcutaneous fibroblasts. A significant fraction of HT1080 cells that switched to blebbing behaviour exhibited stem cell-like features, such as expression of the stem cell marker CD133, an increased efflux of Hoechst-33342 and positive staining for Oct4, Sox2 and Nanog. Furthermore, the isolated CD133+ cells demonstrated an increased ability to switch to bleb-rich amoeboid phenotype both under inhibitor's treatment and in 3D collagen gels. CONCLUSIONS: Together, our data show a significant correlation between the increased ability of cells to switch between migration modes and their stem-like features, suggesting that migration plasticity is an additional property of stem-like population of fibrosarcoma cells. This combination of features could facilitate both dissemination of these cells to distant locations, and their establishment self-renewal in a new microenvironment, as required for metastasis formation. SIGNIFICANCE: These data suggest that migration plasticity is a new feature of cancer stem-like cells that can significantly facilitate their dissemination to a secondary location by allowing them to adapt quickly to challenging microenvironments. Moreover, it complements their resistance to apoptosis and self-renewal potential, thus enabling them not only to disseminate efficiently, but also to survive and colonise new niches.


Asunto(s)
Movimiento Celular , Fibrosarcoma/patología , Células Madre Neoplásicas/patología , Antígeno AC133/metabolismo , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Humanos , Microambiente Tumoral
5.
Methods ; 112: 105-123, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27392934

RESUMEN

Apoptosis is a multistep process of programmed cell death where different morphological and molecular events occur simultaneously and/or consequently. Recent progress in programmed cell death analysis uncovered large heterogeneity in response of individual cells to the apoptotic stimuli. Analysis of the complex and dynamic process of apoptosis requires a capacity to quantitate multiparametric data obtained from multicolor labeling and/or fluorescent reporters of live cells in conjunction with morphological analysis. Modern methods of multiparametric apoptosis study include but are not limited to fluorescent microscopy, flow cytometry and imaging flow cytometry. In the current review we discuss the image-based evaluation of apoptosis on the single-cell and population level by imaging flow cytometry in parallel with other techniques. The advantage of imaging flow cytometry is its ability to interrogate multiparametric morphometric and fluorescence quantitative data in statistically robust manner. Here we describe the current status and future perspectives of this emerging field, as well as some challenges and limitations. We also highlight a number of assays and multicolor labeling probes, utilizing both microscopy and different variants of imaging cytometry, including commonly based assays and novel developments in the field.


Asunto(s)
Apoptosis/genética , Citometría de Flujo/métodos , Citometría de Imagen/métodos , Programas Informáticos , Coloración y Etiquetado/métodos , Algoritmos , Apoptosis/efectos de los fármacos , Carbocianinas/química , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 7/genética , Caspasa 7/metabolismo , Cicloheximida/farmacología , Etopósido/farmacología , Citometría de Flujo/instrumentación , Colorantes Fluorescentes/química , Regulación de la Expresión Génica , Células HeLa , Humanos , Citometría de Imagen/instrumentación , Células Jurkat , Compuestos Organometálicos/química
6.
Methods ; 112: 91-104, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27642004

RESUMEN

Imaging flow cytometry has been applied to address questions in infection biology, in particular, infections induced by intracellular pathogens. This methodology, which utilizes specialized analytic software makes it possible to analyze hundreds of quantified features for hundreds of thousands of individual cellular or subcellular events in a single experiment. Imaging flow cytometry analysis of host cell-pathogen interaction can thus quantitatively addresses a variety of biological questions related to intracellular infection, including cell counting, internalization score, and subcellular patterns of co-localization. Here, we provide an overview of recent achievements in the use of fluorescently labeled prokaryotic or eukaryotic pathogens in human cellular infections in analysis of host-pathogen interactions. Specifically, we give examples of Imagestream-based analysis of cell lines infected with Toxoplasma gondii or Mycobacterium tuberculosis. Furthermore, we illustrate the capabilities of imaging flow cytometry using a combination of standard IDEAS™ software and the more recently developed Feature Finder algorithm, which is capable of identifying statistically significant differences between researcher-defined image galleries. We argue that the combination of imaging flow cytometry with these software platforms provides a powerful new approach to understanding host control of intracellular pathogens.


Asunto(s)
Citometría de Flujo/métodos , Interacciones Huésped-Patógeno , Citometría de Imagen/métodos , Mycobacterium tuberculosis/metabolismo , Programas Informáticos , Toxoplasma/metabolismo , Algoritmos , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/metabolismo , Citometría de Flujo/instrumentación , Colorantes Fluorescentes/química , Regulación de la Expresión Génica , Genes Reporteros , Humanos , Citometría de Imagen/instrumentación , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Mycobacterium tuberculosis/ultraestructura , Fagocitosis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Coloración y Etiquetado/métodos , Células THP-1 , Toxoplasma/ultraestructura , Proteína Fluorescente Roja
7.
Cell Biol Int ; 39(11): 1203-16, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25998195

RESUMEN

It is generally accepted that long microtubules (MTs) grow from the centrosome with their minus ends anchored there and plus ends directed towards cell membrane. However, recent findings show this scheme to be an oversimplification. To further analyze the relationship between the centrosome and the MT array we undertook a detailed study on the MTs growing from the centrosome after microinjection of Cy3 labeled tubulin and transfection of cells with EB1-GFP. To evaluate MTs around the centrosome two approaches were used: path photobleaching across the centrosome area (Komarova et al., ) and sequential image subtraction analysis (Vorobjev et al., ). We show that about 50% of MTs had been nucleated at the centrosome are short-living: their mean length was 1.8 ± 0.8 µm and their life span - 7 ± 2 s. MTs initiated from the centrosome also rarely reach cell margin, since their elongation was limited and growth after shortening (rescue) was rare. After initial growth all MTs associated with the centrosome converted to pause or shortening. After pause MTs associated with the centrosome mainly depolymerized via the plus end shortening. Stability of the minus ends of cytoplasmic MTs was the same as for centrosomal ones. We conclude that in fibroblasts (1) the default behavior of free MTs in the cell interior is biased dynamic instability (i.e., random walk of the plus ends with significant positive drift); (2) MTs born at the centrosome show "dynamic instability" type behavior with no boundary; and (3) that the extended radial array is formed predominantly by MTs not associated with the centrosome.


Asunto(s)
Centrosoma/metabolismo , Microtúbulos/metabolismo , Animales , Bovinos , Células Cultivadas , Centriolos/metabolismo , Ensayo Cometa , Fibroblastos/citología , Fibroblastos/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Células 3T3 NIH , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Tubulina (Proteína)/metabolismo
8.
Biochim Biophys Acta ; 1836(1): 105-22, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23481260

RESUMEN

Increasing evidence of intratumor heterogeneity and its augmentation due to selective pressure of microenvironment and recent achievements in cancer therapeutics lead to the need to investigate and track the tumor subclonal structure. Cell sorting of heterogeneous subpopulations of tumor and tumor-associated cells has been a long established strategy in cancer research. Advancement in lasers, computer technology and optics has led to a new generation of flow cytometers and cell sorters capable of high-speed processing of single cell suspensions. Over the last several years cell sorting was used in combination with molecular biological methods, imaging and proteomics to characterize primary and metastatic cancer cell populations, minimal residual disease and single tumor cells. It was the principal method for identification and characterization of cancer stem cells. Analysis of single cancer cells may improve early detection of tumors, monitoring of circulating tumor cells, evaluation of intratumor heterogeneity and chemotherapeutic treatments. The aim of this review is to provide an overview of major cell sorting applications and approaches with new prospective developments such as microfluidics and microchip technologies.


Asunto(s)
Biomarcadores de Tumor , Investigación Biomédica , Separación Celular/métodos , Heterogeneidad Genética , Neoplasias/patología , Animales , Citometría de Flujo , Humanos , Análisis por Micromatrices , Neoplasias/terapia
9.
Front Vet Sci ; 11: 1371586, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721151

RESUMEN

Cryopreservation of sperm is an essential technique in assisted reproduction in cattle. The objective of the study was to systematically review and synthesize the literature on bull semen quality evaluation based on the comparison of morphological and metabolic parameters of cryopreserved bovine spermatozoa such as DNA integrity, mitochondrial status, plasma membrane alterations, total motility, and morphology (% of abnormal cells). The electronic databases PubMed, Web of Sciences, Scopus, and Google Scholar were searched up to December 2023. Studies and references were included if they reported the following parameters: DNA integrity, mitochondrial status, plasma membrane alterations, total motility, and morphological aberrations (% of abnormal cells) for conventional cryopreserved bovine spermatozoa. After an electronic search, out of 1,526 original studies, only 40 were included in the meta-analysis. Standardized mean differences (SMD) with 95% confidence intervals were estimated for the chosen studies, and a meta-analysis was performed using a random effects model. The tau-squared (tau2) and inconsistency index (I2) quantified heterogeneity among different studies. The regression analysis for the evaluated parameters showed a positive correlation between mitochondrial membrane potential (MMP), total motility, and abnormal morphology and a negative correlation between DNA fragmentation index (DFI) and total motility and MMP. Moreover, subgroup analysis demonstrated similar associations for dairy and non-dairy bull breeds, albeit with lower I2 values. The presence of publication bias was confirmed by Egger's test, except for the MMP parameter. A multi-parametric analysis of morphological and metabolic parameters can address the existing limitations of cryopreserved bovine spermatozoa quality assessment. Combining imaging flow cytometry (IFC) with standardization of sperm pre-processing and optimization of the experimental protocols may help to differentiate sperm from cellular debris and cytoplasmic droplets of similar size and alleviate limitations demonstrated by conventional sperm analysis.

10.
Int J Pharm ; 652: 123852, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38280501

RESUMEN

This study comprises the comprehensive toxicological assessment of thiolated organosilica nanoparticles (NPs) synthesised from 3-mercaptopropyltrimethoxysilane (MPTS). We investigated the influence of three different types of nanoparticles synthesised from 3-mercaptopropyltrimethoxysilane: the starting thiolated silica (Si-NP-SH) and their derivatives prepared by surface PEGylation with PEG 750 (Si-NP-PEG750) and 5000 Da (Si-NP-PEG5000) on biological subjects from in vitro to in vivo experiments to explore the possible applications of those nanoparticles in biomedical research. As a result of this study, we generated a comprehensive understanding of the toxicological properties of these nanoparticles, including their cytotoxicity in different cell lines, hemolytic properties, in vitro localisation, mucosal irritation properties and biodistribution in BALB/c mice. Our findings indicate that all three types of nanoparticles can be considered safe and have promising prospects for use in biomedical applications. Nanoparticles did not affect the viability of HPF, MCF7, HEK293 and A549 cell lines at low concentrations (up to 100 µg/mL); moreover, they did not cause organ damage to BALB/c mice at concentrations of 10 mg/kg. The outcomes of this study enhance our understanding of the impact of organosilica nanoparticles on health and the environment, which is vital for developing silica nanoparticle-based drug delivery systems and provides opportunities to expand the applications of organosilica nanoparticles.


Asunto(s)
Nanopartículas , Compuestos de Organosilicio , Humanos , Ratones , Animales , Distribución Tisular , Células HEK293 , Nanopartículas/toxicidad , Dióxido de Silicio/toxicidad , Polietilenglicoles/toxicidad
11.
BMC Cell Biol ; 14: 23, 2013 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-23607880

RESUMEN

BACKGROUND: The present review summarizes current knowledge about microparticles (MPs) and provides a systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance. RESULTS: MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm. MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and early diagnostic platform. CONCLUSIONS: Improvements in the effective deciphering of MP molecular signatures will be critical not only for diagnostics, but also for the evaluation of treatment regimens and predicting disease outcomes.


Asunto(s)
Enfermedades Autoinmunes/fisiopatología , Micropartículas Derivadas de Células/fisiología , Inflamación/fisiopatología , Neoplasias/fisiopatología , Animales , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Transmisibles/fisiopatología , Modelos Animales de Enfermedad , Humanos
12.
Nucleic Acids Res ; 39(11): e77, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21486748

RESUMEN

DNA methylation profiling has become an important aspect of biomedical molecular analysis. Polymerase chain reaction (PCR) amplification of bisulphite-treated DNA is a processing step that is common to many currently used methods of quantitative methylation analysis. Preferential amplification of unmethylated alleles-known as PCR-bias-may significantly affect the accuracy of quantification. To date, no universal experimental approach has been reported to overcome the problem. This study presents an effective method of correcting biased methylation data. The procedure includes a calibration performed in parallel to the analysis of the samples under investigation. DNA samples with defined degrees of methylation are analysed. The observed deviation of the experimental results from the expected values is used for calculating a regression curve. The equation of the best-fitting curve is then used for correction of the data obtained from the samples of interest. The process can be applied irrespective of the locus interrogated and the number of sites analysed, avoiding an optimization of the amplification conditions for each individual locus.


Asunto(s)
Metilación de ADN , Reacción en Cadena de la Polimerasa/métodos , Alelos , Linfocitos B/metabolismo , Calibración , Línea Celular Tumoral , Humanos , Leucemia/genética , Modelos Lineales , Reacción en Cadena de la Polimerasa/normas , Reproducibilidad de los Resultados
13.
Methods Mol Biol ; 2635: 3-22, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37074654

RESUMEN

Spectral flow cytometry is a new technology that enables measurements of fluorescent spectra and light scattering properties in diverse cellular populations with high precision. Modern instruments allow simultaneous determination of up to 40+ fluorescent dyes with heavily overlapping emission spectra, discrimination of autofluorescent signals in the stained specimens, and detailed analysis of diverse autofluorescence of different cells-from mammalian to chlorophyll-containing cells like cyanobacteria. In this paper, we review the history, compare modern conventional and spectral flow cytometers, and discuss several applications of spectral flow cytometry.


Asunto(s)
Diagnóstico por Imagen , Colorantes Fluorescentes , Animales , Citometría de Flujo/métodos , Mamíferos
14.
Methods Mol Biol ; 2635: 23-40, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37074655

RESUMEN

Fluorescence methods are widely used for the study of marine and freshwater phytoplankton communities. However, the identification of different microalgae populations by the analysis of autofluorescence signals remains a challenge. Addressing the issue, we developed a novel approach using the flexibility of spectral flow cytometry analysis (SFC) and generating a matrix of virtual filters (VF) which allowed thorough examination of autofluorescence spectra. Using this matrix, different spectral emission regions of algae species were analyzed, and five major algal taxa were discriminated. These results were further applied for tracing particular microalgae taxa in the complex mixtures of laboratory and environmental algal populations. An integrated analysis of single algal events combined with unique spectral emission fingerprints and light scattering parameters of microalgae can be used to differentiate major microalgal taxa. We propose a protocol for the quantitative assessment of heterogenous phytoplankton communities at the single-cell level and monitoring of phytoplankton bloom detection using a virtual filtering approach on a spectral flow cytometer (SFC-VF).


Asunto(s)
Microalgas , Citometría de Flujo/métodos , Fitoplancton , Agua Dulce , Coloración y Etiquetado
15.
Methods Mol Biol ; 2635: 87-101, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37074658

RESUMEN

Multi-nuclearity is a common feature for cells in different cancers. Also, analysis of multi-nuclearity in cultured cells is widely used for evaluating the toxicity of different drugs. Multi-nuclear cells in cancer and under drug treatments form from aberrations in cell division and/or cytokinesis. These cells are a hallmark of cancer progression, and the abundance of multi-nucleated cells often correlates with poor prognosis.The use of standard bright field or fluorescent microscopy to analyze multi-nuclearity at the quantitative level is laborious and can suffer from user bias. Automated slide-scanning microscopy can eliminate scorer bias and improve data collection. However, this method has limitations, such as insufficient visibility of multiple nuclei in the cells attached to the substrate at low magnification.Since quantification of multi-nuclear cells using microscopic methods might be difficult, imaging flow cytometry (IFC) is a method of choice for this. We describe the experimental protocol for the preparation of the samples of multi-nucleated cells from the attached cultures and the algorithm for the analysis of these cells by IFC. Images of multi-nucleated cells obtained after mitotic arrest induced by taxol, as well as cells obtained after cytokinesis blockade by cytochalasin D treatment, can be acquired at a maximal resolution of IFC. We suggest two algorithms for the discrimination of single-nucleus and multi-nucleated cells. The advantages and disadvantages of IFC analysis of multi-nuclear cells in comparison with microscopy are discussed.


Asunto(s)
Núcleo Celular , Citocinesis , Citometría de Flujo/métodos , División Celular , Núcleo Celular/ultraestructura , Microscopía
16.
Methods Mol Biol ; 2635: 245-258, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37074667

RESUMEN

Microcystis is a globally known cyanobacterium causing potentially toxic blooms worldwide. Different morphospecies with specific morphological and physiological characters usually co-occur during blooming, and their quantification employing light microscopy can be time-consuming and problematic. A benchtop imaging flow cytometer (IFC) FlowCam (Yokogawa Fluid Imaging Technologies, USA) was used to identify and quantitate different Microcystis morphospecies from environmental samples. We describe here the FlowCam methodology for sample processing and analysis of five European morphospecies of Microcystis common to the temperate zone. The FlowCam technique allows detection of different Microcystis morphospecies providing objective qualitative and quantitative data for statistical analysis.


Asunto(s)
Cianobacterias , Microcystis , Citometría de Flujo/métodos , Microscopía
17.
BMC Cancer ; 12: 213, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22672427

RESUMEN

BACKGROUND: The Wnt/ß-catenin signalling is aberrantly activated in primary B cell chronic lymphocytic leukaemia (CLL). Epigenetic silencing of pathway inhibitor genes may be a mechanism for its activation. In this study, we investigated systematically and quantitatively the methylation status of 12 Wnt/ß-catenin pathway inhibitor genes - CDH1, DACT1, DKK1, DKK2, DKK3, DKK4, SFRP1, SFRP2, SFRP3, SFRP4, SFRP5 and WIF1 - in the cell lines EHEB and MEC-1 as well as patient samples. METHODS: Quantification of DNA methylation was performed by means of bisulphite pyrosequencing and confirmed by bisulphite Sanger sequencing. Gene expression was analysed by qPCR using GAPDH as internal control. E-cadherin and ß-catenin protein quantification was carried out by microsphere-based immunoassays. Methylation differences observed between the patient and control groups were tested using generalised least squares models. RESULTS: For 10 genes, a higher methylation level was observed in tumour material. Only DKK4 exhibited similarly high methylation levels in both tumour and normal specimens, while DACT1 was always essentially unmethylated. However, also for these inhibitors, treatment of cells with the demethylating agent 5-aza-2´-deoxycytidine resulted in an induction of their expression, as shown by quantitative PCR, suggesting an indirect epigenetic control of activity. While the degree of demethylation and its transcriptional consequences differed between the genes, there was an overall high correlation of demethylation and increased activity. Protein expression studies revealed that no constitutive Wnt/ß-catenin signalling occurred in the cell lines, which is in discrepancy with results from primary CLL. However, treatment with 5-aza-2´-deoxycytidine caused accumulation of ß-catenin. Simultaneously, E-cadherin expression was strongly induced, leading to the formation of a complex with ß-catenin and thus demonstrating its epigenetically regulated inhibition effect. CONCLUSIONS: The results suggest an epigenetic silencing mechanism of the Wnt/ß-catenin pathway inhibitor genes in CLL. Hypermethylation and silencing of functionally related genes may not be completely stochastic but result from the tumour epigenome reprogramming orchestrated by Polycomb-group repressive complexes. The data are of interest in the context of epigenetic-based therapy.


Asunto(s)
Epigénesis Genética , Silenciador del Gen , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Antimetabolitos Antineoplásicos/farmacología , Azacitidina/farmacología , Cadherinas/metabolismo , Línea Celular Tumoral , Mapeo Cromosómico , Islas de CpG , Metilación de ADN , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Unión Proteica
18.
Malar J ; 11: 312, 2012 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-22950515

RESUMEN

BACKGROUND: Malaria remains a major cause of morbidity and mortality worldwide. Flow cytometry-based assays that take advantage of fluorescent protein (FP)-expressing malaria parasites have proven to be valuable tools for quantification and sorting of specific subpopulations of parasite-infected red blood cells. However, identification of rare subpopulations of parasites using green fluorescent protein (GFP) labelling is complicated by autofluorescence (AF) of red blood cells and low signal from transgenic parasites. It has been suggested that cell sorting yield could be improved by using filters that precisely match the emission spectrum of GFP. METHODS: Detection of transgenic Plasmodium falciparum parasites expressing either tdTomato or GFP was performed using a flow cytometer with interchangeable optical filters. Parasitaemia was evaluated using different optical filters and, after optimization of optics, the GFP-expressing parasites were sorted and analysed by microscopy after cytospin preparation and by imaging cytometry. RESULTS: A new approach to evaluate filter performance in flow cytometry using two-dimensional dot blot was developed. By selecting optical filters with narrow bandpass (BP) and maximum position of filter emission close to GFP maximum emission in the FL1 channel (510/20, 512/20 and 517/20; dichroics 502LP and 466LP), AF was markedly decreased and signal-background improve dramatically. Sorting of GFP-expressing parasite populations in infected red blood cells at 90 or 95% purity with these filters resulted in 50-150% increased yield when compared to the standard filter set-up. The purity of the sorted population was confirmed using imaging cytometry and microscopy of cytospin preparations of sorted red blood cells infected with transgenic malaria parasites. DISCUSSION: Filter optimization is particularly important for applications where the FP signal and percentage of positive events are relatively low, such as analysis of parasite-infected samples with in the intention of gene-expression profiling and analysis. The approach outlined here results in substantially improved yield of GFP-expressing parasites, and requires decreased sorting time in comparison to standard methods. It is anticipated that this protocol will be useful for a wide range of applications involving rare events.


Asunto(s)
Citometría de Flujo/métodos , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Animales , Animales Modificados Genéticamente , Eritrocitos/parasitología , Filtración/instrumentación , Citometría de Flujo/instrumentación , Citometría de Flujo/estadística & datos numéricos , Proteínas Fluorescentes Verdes/genética , Humanos , Malaria Falciparum/parasitología , Dispositivos Ópticos , Parasitemia/parasitología , Proteínas Recombinantes/genética
19.
Microorganisms ; 10(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36014075

RESUMEN

Regulated cell death (RCD) is central to the development, integrity, and functionality of multicellular organisms. In the last decade, evidence has accumulated that RCD is a universal phenomenon in all life domains. Cyanobacteria are of specific interest due to their importance in aquatic and terrestrial habitats and their role as primary producers in global nutrient cycling. Current knowledge on cyanobacterial RCD is based mainly on biochemical and morphological observations, often by methods directly transferred from vertebrate research and with limited understanding of the molecular genetic basis. However, the metabolism of different cyanobacteria groups relies on photosynthesis and nitrogen fixation, whereas mitochondria are the central executioner of cell death in vertebrates. Moreover, cyanobacteria chosen as biological models in RCD studies are mainly colonial or filamentous multicellular organisms. On the other hand, unicellular cyanobacteria have regulated programs of cellular survival (RCS) such as chlorosis and post-chlorosis resuscitation. The co-existence of different genetically regulated programs in cyanobacterial populations may have been a top engine in life diversification. Development of cyanobacteria-specific methods for identification and characterization of RCD and wider use of single-cell analysis combined with intelligent image-based cell sorting and metagenomics would shed more light on the underlying molecular mechanisms and help us to address the complex colonial interactions during these events. In this review, we focus on the functional implications of RCD in cyanobacterial communities.

20.
Microorganisms ; 10(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35889045

RESUMEN

The climate-driven changes in temperature, in combination with high inputs of nutrients through anthropogenic activities, significantly affect phytoplankton communities in shallow lakes. This study aimed to assess the effect of nutrients on the community composition, size distribution, and diversity of phytoplankton at three contrasting temperature regimes in phosphorus (P)-enriched mesocosms and with different nitrogen (N) availability imitating eutrophic environments. We applied imaging flow cytometry (IFC) to evaluate complex phytoplankton communities changes, particularly size of planktonic cells, biomass, and phytoplankton composition. We found that N enrichment led to the shift in the dominance from the bloom-forming cyanobacteria to the mixed-type blooming by cyanobacteria and green algae. Moreover, the N enrichment stimulated phytoplankton size increase in the high-temperature regime and led to phytoplankton size decrease in lower temperatures. A combination of high temperature and N enrichment resulted in the lowest phytoplankton diversity. Together these findings demonstrate that the net effect of N and P pollution on phytoplankton communities depends on the temperature conditions. These implications are important for forecasting future climate change impacts on the world's shallow lake ecosystems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA