Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proteins ; 87(11): 917-930, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31162722

RESUMEN

Cellulolytic clostridia use a highly efficient cellulosome system to degrade polysaccharides. To regulate genes encoding enzymes of the multi-enzyme cellulosome complex, certain clostridia contain alternative sigma I (σI ) factors that have cognate membrane-associated anti-σI factors (RsgIs) which act as polysaccharide sensors. In this work, we analyzed the structure-function relationship of the extracellular sensory elements of Clostridium (Ruminiclostridium) thermocellum and Clostridium clariflavum (RsgI3 and RsgI4, respectively). These elements were selected for comparison, as each comprised two tandem PA14-superfamily motifs. The X-ray structures of the PA14 modular dyads from the two bacterial species were determined, both of which showed a high degree of structural and sequence similarity, although their binding preferences differed. Bioinformatic approaches indicated that the DNA sequence of promoter of sigI/rsgI operons represents a strong signature, which helps to differentiate binding specificity of the structurally similar modules. The σI4 -dependent C. clariflavum promoter sequence correlates with binding of RsgI4_PA14 to xylan and was identified in genes encoding xylanases, whereas the σI3 -dependent C. thermocellum promoter sequence correlates with RsgI3_PA14 binding to pectin and regulates pectin degradation-related genes. Structural similarity between clostridial PA14 dyads to PA14-containing proteins in yeast helped identify another crucial signature element: the calcium-binding loop 2 (CBL2), which governs binding specificity. Variations in the five amino acids that constitute this loop distinguish the pectin vs xylan specificities. We propose that the first module (PA14A ) is dominant in directing the binding to the ligand in both bacteria. The two X-ray structures of the different PA14 dyads represent the first reported structures of tandem PA14 modules.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulosomas/metabolismo , Clostridium/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biomasa , Celulosomas/química , Celulosomas/genética , Clostridium/química , Clostridium/genética , Clostridium thermocellum/química , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Regiones Promotoras Genéticas , Conformación Proteica , Alineación de Secuencia
2.
Environ Microbiol ; 16(7): 2157-67, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23962203

RESUMEN

Plant roots create specific microbial habitat in the soil - the rhizosphere. In this study, we characterized the rhizosphere microbiome of four host plant species to get insight into the impact of the host (host signature effect) on resident vs. active communities. Results show a distinct plant host specific signature found among wheat, maize, tomato and cucumber, based on the following three parameters: (i) each plant promoted the activity of a unique suite of soil bacterial populations; (ii) significant variations were observed in the number and the degree of dominance of active populations; and (iii) the level of contribution of active (rRNA-based) populations to the resident (DNA-based) community profiles. In the rhizoplane of all four plants, a significant reduction of diversity was observed, relative to the bulk soil. Moreover, an increase in DNA-RNA correspondence indicated higher representation of active bacterial populations in the residing rhizoplane community. This study demonstrates that the host plant determines the bacterial community composition in its immediate vicinity, especially with respect to the active populations.


Asunto(s)
ADN Bacteriano/genética , Microbiota/genética , Raíces de Plantas/microbiología , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Microbiología del Suelo , Cucumis sativus/microbiología , Solanum lycopersicum/microbiología , Filogenia , Rizosfera , Especificidad de la Especie , Triticum/microbiología , Zea mays/microbiología
3.
Proteins ; 79(1): 50-60, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20954171

RESUMEN

The increasing numbers of published genomes has enabled extensive survey of protein sequences in nature. During the course of our studies on cellulolytic bacteria that produce multienzyme cellulosome complexes designed for efficient degradation of cellulosic substrates, we have investigated the intermodular cohesin-dockerin interaction, which provides the molecular basis for cellulosome assembly. An early search of the genome databases yielded the surprising existence of a dockerin-like sequence and two cohesin-like sequences in the hyperthermophilic noncellulolytic archaeon, Archaeoglobus fulgidus, which clearly contradicts the cellulosome paradigm. Here, we report a biochemical and biophysical analysis, which revealed particularly strong- and specific-binding interactions between these two cohesins and the single dockerin. The crystal structure of one of the recombinant cohesin modules was determined and found to resemble closely the type-I cohesin structure from the cellulosome of Clostridium thermocellum, with certain distinctive features: two of the loops in the archaeal cohesin structure are shorter than those of the C. thermocellum structure, and a large insertion of 27-amino acid residues, unique to the archaeal cohesin, appears to be largely disordered. Interestingly, the cohesin module undergoes reversible dimer and tetramer formation in solution, a property, which has not been observed previously for other cohesins. This is the first description of cohesin and dockerin interactions in a noncellulolytic archaeon and the first structure of an archaeal cohesin. This finding supports the notion that interactions based on the cohesin-dockerin paradigm are of more general occurrence and are not unique to the cellulosome system.


Asunto(s)
Proteínas Arqueales/química , Archaeoglobus fulgidus , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Clostridium thermocellum , Cristalografía por Rayos X , Unión Proteica , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Cohesinas
4.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 4): 95-104, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33830074

RESUMEN

A novel member of the family 3 carbohydrate-binding modules (CBM3s) is encoded by a gene (Cthe_0271) in Clostridium thermocellum which is the most highly expressed gene in the bacterium during its growth on several types of biomass substrates. Surprisingly, CtCBM3-0271 binds to at least two different types of xylan, instead of the common binding of CBM3s to cellulosic substrates. CtCBM3-0271 was crystallized and its three-dimensional structure was solved and refined to a resolution of 1.8 Å. In order to learn more about the role of this type of CBM3, a comparative study with its orthologue from Clostridium clariflavum (encoded by the Clocl_1192 gene) was performed, and the three-dimensional structure of CcCBM3-1192 was determined to 1.6 Šresolution. Carbohydrate binding by CcCBM3-1192 was found to be similar to that by CtCBM3-0271; both exhibited binding to xylan rather than to cellulose. Comparative structural analysis of the two CBM3s provided a clear functional correlation of structure and binding, in which the two CBM3s lack the required number of binding residues in their cellulose-binding strips and thus lack cellulose-binding capabilities. This is an enigma, as CtCBM3-0271 was reported to be a highly expressed protein when the bacterium was grown on cellulose. An additional unexpected finding was that CcCBM3-1192 does not contain the calcium ion that was considered to play a structural stabilizing role in the CBM3 family. Despite the lack of calcium, the five residues that form the calcium-binding site are conserved. The absence of calcium results in conformational changes in two loops of the CcCBM3-1192 structure. In this context, superposition of the non-calcium-binding CcCBM3-1192 with CtCBM3-0271 and other calcium-binding CBM3s reveals a much broader two-loop region in the former compared with CtCBM3-0271.


Asunto(s)
Clostridiales/metabolismo , Clostridium thermocellum/metabolismo , Proteínas de la Membrana/metabolismo , Polisacáridos/metabolismo , Secuencia de Aminoácidos , Clostridiales/química , Clostridiales/genética , Clostridium thermocellum/química , Clostridium thermocellum/genética , Cristalización , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Polisacáridos/química , Polisacáridos/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
5.
Artículo en Inglés | MEDLINE | ID: mdl-19255482

RESUMEN

A cohesin-like module of 160 amino-acid residues from the hypothetical protein AF2375 of the noncellulolytic, hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus was cloned, expressed, purified, crystallized and subjected to X-ray structural study in order to compare its structure with those of cellulolytic cohesins. The crystals had cubic symmetry, with unit-cell parameters a = b = c = 101.75 A in space group P4(3)32, and diffracted to 1.82 A resolution. The asymmetric unit contained a single cohesin molecule. A model assembled from six cohesin structures (PDB entries 1anu, 1aoh, 1g1k, 1qzn, 1zv9 and 1tyj) of very low sequence identity to the cohesin-like module was used in molecular-replacement attempts, producing a marginal solution.


Asunto(s)
Proteínas Arqueales/química , Archaeoglobus fulgidus/química , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Cristalización , Cristalografía por Rayos X , Cohesinas
6.
Proteomics ; 8(5): 968-79, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18219699

RESUMEN

The cellulosome is an intricate multienzyme complex, designed for efficient degradation of plant cell wall polysaccharides, notably cellulose. The supramolecular cellulosome architecture in different bacteria is the consequence of the types and specificities of the interacting cohesin and dockerin modules, borne by the different cellulosomal subunits. In this study, we describe a microarray system for determining cohesin-dockerin specificity, which allows global comparison among the interactions between various members of these two complementary families of interacting protein modules. Matching recombinant fusion proteins were prepared that contained one of the interacting modules: cohesins were joined to an appropriate cellulose-binding module (CBM) and the dockerins were fused to a thermostable xylanase that served to enhance expression and proper folding. The CBM-fused cohesins were immobilized on cellulose-coated glass slides, to which xylanase-fused dockerin samples were applied. Knowledge of the specificity characteristics of native and mutated members of the cohesin and dockerin families provides insight into the architecture of the parent cellulosome and allows selection of suitable cohesin-dockein pairs for biotechnological and nanotechnological application. Using this approach, extensive cross-species interaction among type-II cohesins and dockerins is shown for the first time. Selective intraspecies binding of an archaeal dockerin to two complementary cohesins is also demonstrated.


Asunto(s)
Proteínas Arqueales/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Análisis por Matrices de Proteínas , Archaea/química , Bacterias/química , Proteínas Bacterianas/química , Proteínas de Ciclo Celular/química , Celulosomas/química , Proteínas Cromosómicas no Histona/química , Proteínas de la Membrana/química , Complejos Multienzimáticos , Proteínas Nucleares/química , Cohesinas
7.
FEBS Lett ; 589(14): 1569-76, 2015 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-25896019

RESUMEN

The cellulolytic bacterium Ruminococcus flavefaciens of the herbivore rumen produces an elaborate cellulosome system, anchored to the bacterial cell wall via the covalently bound scaffoldin ScaE. Dockerin-bearing scaffoldins also bind to an autonomous cohesin of unknown function, called cohesin G (CohG). Here, we demonstrate that CohG binds to the scaffoldin-borne dockerin in opposite orientation on a distinct site, relative to that of ScaE. Based on these structural data, we propose that the complexed dockerin is still available to bind ScaE on the cell surface. CohG may thus serve as a molecular shuttle for delivery of scaffoldins to the bacterial cell surface.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Celulosomas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Cohesinas
8.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 4): 450-6, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699736

RESUMEN

Ruminococcus flavefaciens is a cellulolytic bacterium found in the rumen of herbivores and produces one of the most elaborate and variable cellulosome systems. The structure of an R. flavefaciens protein (RfCohG, ZP_06142108), representing a freestanding (non-cellulosomal) type III cohesin module, has been determined. A selenomethionine derivative with a C-terminal histidine tag was crystallized and diffraction data were measured to 2.44 Šresolution. Its structure was determined by single-wavelength anomalous dispersion, revealing eight molecules in the asymmetric unit. RfCohG exhibits the most complex among all known cohesin structures, possessing four α-helical elements and a topographical protuberance on the putative dockerin-binding surface.


Asunto(s)
Proteínas de Ciclo Celular/química , Celulosomas/química , Proteínas Cromosómicas no Histona/química , Ruminococcus/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Celulosomas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cristalización , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Selenometionina/química , Selenometionina/metabolismo , Homología de Secuencia de Aminoácido , Tirosina/química , Cohesinas
9.
PLoS One ; 8(2): e56138, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23457513

RESUMEN

BACKGROUND: Ruminococcus flavefaciens is one of the predominant fiber-degrading bacteria found in the rumen of herbivores. Bioinformatic analysis of the recently sequenced genome indicated that this bacterium produces one of the most intricate cellulosome systems known to date. A distinct ORF, encoding for a multi-modular protein, RflaF_05439, was discovered during mining of the genome sequence. It is composed of two tandem modules of currently undefined function that share 45% identity and a C-terminal X-dockerin modular dyad. Gaining insight into the diversity, architecture and organization of different types of proteins in the cellulosome system is essential for broadening our understanding of a multi-enzyme complex, considered to be one of the most efficient systems for plant cell wall polysaccharide degradation in nature. METHODOLOGY/PRINCIPAL FINDINGS: Following bioinformatic analysis, the second tandem module of RflaF_05439 was cloned and its selenium-labeled derivative was expressed and crystallized. The crystals belong to space group P21 with unit-cell parameters of a = 65.81, b = 60.61, c = 66.13 Å, ß = 107.66° and contain two protein molecules in the asymmetric unit. The crystal structure was determined at 1.38-Å resolution by X-ray diffraction using the single-wavelength anomalous dispersion (SAD) method and was refined to Rfactor and Rfree of 0.127 and 0.152 respectively. The protein molecule mainly comprises a ß-sheet flanked by short α-helixes, and a globular α-helical domain. The structure was found to be structurally similar to members of the NlpC/P60 superfamily of cysteine peptidases. CONCLUSIONS/SIGNIFICANCE: The 3D structure of the second repeat of the RflaF_05439 enabled us to propose a role for the currently undefined function of this protein. Its putative function as a cysteine peptidase is inferred from in silico structural homology studies. It is therefore apparent that cellulosomes integrate proteins with other functions in addition to the classic well-defined carbohydrate active enzymes.


Asunto(s)
Proteínas Bacterianas/química , Celulosomas/química , Papaína/química , Ruminococcus/química , Ruminococcus/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA