Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 104(18): 184501, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20482177

RESUMEN

We study the effects of polymer additives on turbulence generated by the ubiquitous Rayleigh-Taylor instability. Numerical simulations of complete viscoelastic models provide clear evidence that the heat transport is enhanced up to 50% with respect to the Newtonian case. This phenomenon is accompanied by a speed-up of the mixing layer growth. We give a phenomenological interpretation of these results based on small-scale turbulent reduction induced by polymers.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(6 Pt 2): 065301, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19658550

RESUMEN

Turbulence induced by Rayleigh-Taylor instability is a ubiquitous phenomenon with applications ranging from atmospheric physics and geophysics to supernova explosions and plasma confinement fusion. Despite its fundamental character, a phenomenological theory has been proposed only recently and several predictions are untested. In this Rapid Communication we confirm spatiotemporal predictions of the theory by means of direct numerical simulations at high resolution and we extend the phenomenology to take into account intermittency effects. We show that scaling exponents are indistinguishable from those of Navier-Stokes turbulence at comparable Reynolds number, a result in support of the universality of turbulence with respect to the forcing mechanism. We also show that the time dependence of Rayleigh, Reynolds, and Nusselt numbers realizes the Kraichnan scaling regime associated with the ultimate state of thermal convection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA