Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Catheter Cardiovasc Interv ; 102(7): 1331-1340, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37855202

RESUMEN

BACKGROUND: The presented study investigates the application of bi-arterial 3D printed models to guide transseptal puncture (TSP) in left atrial appendage closure (LAAC). AIMS: The objectives are to (1) test the feasibility of 3D printing (3DP) for TSP guidance, (2) analyse the distribution of the optimal TSP locations, and (3) define a CT-derived 2D parameter suitable for predicting the optimal TSP locations. METHODS: Preprocedural planning included multiplanar CT reconstruction, 3D segmentation, and 3DP. TSP was preprocedurally simulated in vitro at six defined sites. Based on the position of the sheath, TSP sites were classified as optimal, suboptimal, or nonoptimal. The aim was to target the TSP in the recommended position during the procedure. Procedure progress was assessed post hoc by the operator. RESULTS: Of 68 screened patients, 60 patients in five centers (mean age of 74.68 ± 7.64 years, 71.66% males) were prospectively analyzed (3DP failed in one case, and seven patients did not finally undergo the procedure). In 55 patients (91.66%), TSP was performed in the optimal location as recommended by the 3DP. The optimal locations for TSP were postero-inferior in 45.3%, mid-inferior in 45.3%, and antero-inferior in 37.7%, with a mean number of optimal segments of 1.34 ± 0.51 per patient. When the optimal TSP location was achieved, the procedure was considered difficult in only two (3.6%) patients (but in both due to complicated LAA anatomy). Comparing anterior versus posterior TSP in 2D CCT, two parameters differed significantly: (1) the angle supplementary to the LAA ostium and the interatrial septum angle (160.83° ± 9.42° vs. 146.49° ± 8.67°; p = 0.001), and (2) the angle between the LAA ostium and the mitral annulus (95.02° ± 3.73° vs. 107.38° ± 6.76°; p < 0.001), both in the sagittal plane. CONCLUSIONS: In vitro TSP simulation accurately determined the optimal TSP locations for LAAC and facilitated the procedure. More than one-third of the optimal TSP sites were anterior.


Asunto(s)
Apéndice Atrial , Fibrilación Atrial , Masculino , Humanos , Anciano , Anciano de 80 o más Años , Femenino , Apéndice Atrial/diagnóstico por imagen , Apéndice Atrial/cirugía , Resultado del Tratamiento , Fibrilación Atrial/terapia , Fibrilación Atrial/cirugía , Impresión Tridimensional , Tomografía Computarizada por Rayos X , Punciones/métodos
2.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36850630

RESUMEN

The aim of this work was to test microwave brain stroke detection and classification using support vector machines (SVMs). We tested how the nature and variability of training data and system parameters impact the achieved classification accuracy. Using experimentally verified numerical models, a large database of synthetic training and test data was created. The models consist of an antenna array surrounding reconfigurable geometrically and dielectrically realistic human head phantoms with virtually inserted strokes of arbitrary size, and different dielectric parameters in different positions. The generated synthetic data sets were used to test four different hypotheses, regarding the appropriate parameters of the training dataset, the appropriate frequency range and the number of frequency points, as well as the level of subject variability to reach the highest SVM classification accuracy. The results indicate that the SVM algorithm is able to detect the presence of the stroke and classify it (i.e., ischemic or hemorrhagic) even when trained with single-frequency data. Moreover, it is shown that data of subjects with smaller strokes appear to be the most suitable for training accurate SVM predictors with high generalization capabilities. Finally, the datasets created for this study are made available to the community for testing and developing their own algorithms.


Asunto(s)
Microondas , Accidente Cerebrovascular , Humanos , Máquina de Vectores de Soporte , Encéfalo , Accidente Cerebrovascular/diagnóstico , Algoritmos
3.
J Therm Biol ; 115: 103625, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37429086

RESUMEN

PURPOSE: To compare different thermal tissue models for head and neck hyperthermia treatment planning, and to assess the results using predicted and measured applied power data from clinical treatments. METHODS: Three commonly used temperature models from literature were analysed: "constant baseline", "constant thermal stress" and "temperature dependent". Power and phase data of 93 treatments of 20 head and neck patients treated with the HYPERcollar3D applicator were used. The impact on predicted median temperature T50 inside the target region was analysed with maximum allowed temperature of 44 °C in healthy tissue. The robustness of predicted T50 for the three models against the influence of blood perfusion, thermal conductivity and the assumed hotspot temperature level was analysed. RESULTS: We found an average predicted T50 of 41.0 ± 1.3 °C (constant baseline model), 39.9 ± 1.1 °C (constant thermal stress model) and 41.7 ± 1.1 °C (temperature dependent model). The constant thermal stress model resulted in the best agreement between the predicted power (P = 132.7 ± 45.9 W) and the average power measured during the hyperthermia treatments (P = 129.1 ± 83.0 W). CONCLUSION: The temperature dependent model predicts an unrealistically high T50. The power values for the constant thermal stress model, after scaling simulated maximum temperatures to 44 °C, matched best to the average measured powers. We consider this model to be the most appropriate for temperature predictions using the HYPERcollar3D applicator, however further studies are necessary for developing of robust temperature model for tissues during heat stress.


Asunto(s)
Hipertermia Inducida , Humanos , Hipertermia Inducida/métodos , Temperatura , Cuello , Hipertermia/etiología , Cabeza
4.
Sensors (Basel) ; 22(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36015874

RESUMEN

Due to the clinically proven benefit of hyperthermia treatments if added to standard cancer therapies for various tumor sites and the recent development of non-invasive temperature measurements using magnetic resonance systems, the hyperthermia community is convinced that it is a time when even patients with brain tumors could benefit from regional microwave hyperthermia, even if they are the subject of a treatment to a vital organ. The purpose of this study was to numerically analyze the ability to achieve a therapeutically relevant constructive superposition of electromagnetic (EM) waves in the treatment of hyperthermia targets within the brain. We evaluated the effect of the target size and position, operating frequency, and the number of antenna elements forming the phased array applicator on the treatment quality. In total, 10 anatomically realistic 2D human head models were considered, in which 10 circular hyperthermia targets with diameters of 20, 25, and 30 mm were examined. Additionally, applicators with 8, 12, 16, and 24 antenna elements and operating frequencies of 434, 650, 915, and 1150 MHz, respectively, were analyzed. For all scenarios considered (4800 combinations), the EM field distributions of individual antenna elements were calculated and treatment planning was performed. Their quality was evaluated using parameters applied in clinical practice, i.e., target coverage (TC) and the target to hot-spot quotient (THQ). The 12-antenna phased array system operating at 434 MHz was the best candidate among all tested systems for HT treatments of glioblastoma tumors. The 12 antenna elements met all the requirements to cover the entire target area; an additional increase in the number of antenna elements did not have a significant effect on the treatment quality.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Hipertermia Inducida , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/terapia , Humanos , Imagen por Resonancia Magnética , Microondas/uso terapéutico
5.
Sensors (Basel) ; 21(20)2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34696084

RESUMEN

The use of microwave technology is currently under investigation for non-invasive estimation of glycemia in patients with diabetes. Due to their construction, metamaterial (MTM)-based sensors have the potential to provide higher sensitivity of the phase shift of the S21 parameter (∠S21) to changes in glucose concentration compared to standard microstrip transmission line (MSTL)-based sensors. In this study, a MSTL sensor and three MTM sensors with 5, 7, and 9 MTM unit cells are exposed to liquid phantoms with different dielectric properties mimicking a change in blood glucose concentration from 0 to 14 mmol/L. Numerical models were created for the individual experiments, and the calculated S-parameters show good agreement with experimental results, expressed by the maximum relative error of 8.89% and 0.96% at a frequency of 1.99 GHz for MSTL and MTM sensor with nine unit cells, respectively. MTM sensors with an increasing number of cells show higher sensitivity of 0.62° per mmol/L and unit cell to blood glucose concentration as measured by changes in ∠S21. In accordance with the numerical simulations, the MTM sensor with nine unit cells showed the highest sensitivity of the sensors proposed by us, with an average of 3.66° per mmol/L at a frequency of 1.99 GHz, compared to only 0.48° per mmol/L for the MSTL sensor. The multi-cell MTM sensor has the potential to proceed with evaluation of human blood samples.


Asunto(s)
Automonitorización de la Glucosa Sanguínea , Glucemia , Estudios de Factibilidad , Humanos , Microondas , Monitoreo Fisiológico
6.
Int J Hyperthermia ; 31(3): 260-71, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25825987

RESUMEN

PURPOSE: Focused ultrasound (FUS) is a modality with rapidly expanding applications across the field of medicine. Treatment of bone lesions with FUS including both benign and malignant tumours has been an active area of investigation. Recently, as a result of a successful phase III trial, magnetic resonance-guided FUS is now a standardised option for treatment of painful bone metastases. This report reviews the clinical applications amenable to treatment with FUS and provides background on FUS and image guidance techniques, results of clinical studies, and future directions. METHODS: A comprehensive literature search and review of abstracts presented at the recently completed fourth International Focused Ultrasound Symposium was performed. Case reports and older publications revisited in more recent studies were excluded. For clinical studies that extend beyond bone tumours, only the data regarding bone tumours are presented. RESULTS: Fifteen studies assessing the use of focused ultrasound in treatment of primary benign bone tumours, primary malignant tumours, and metastatic tumours meeting the search criteria were identified. For these clinical studies the responders group varied within 91-100%, 85-87% and 64-94%, respectively. Major complications were reported in the ranges 0%, 0-28% and 0-4% for primary benign, malignant and metastatic tumours, respectively. CONCLUSIONS: Image-guided FUS is both safe and effective in the treatment of primary and secondary tumours. Additional phase III trials are warranted to more fully define the role of FUS in treatment of both benign and malignant bone tumours.


Asunto(s)
Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/terapia , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Cuidados Paliativos/métodos , Humanos , Ultrasonografía
7.
Anal Chem ; 84(1): 30-3, 2012 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-22145598

RESUMEN

We explore the ultimate limits of the performance of bioanalytical approaches based on the detection of individual molecular binding events taking place at the sensor surface interfaced with a microfluidic flow-through cell. As a case study, we investigate and compare the bioanalytical performance of flow-through surface plasmon resonance (SPR) sensors based on (1) localized surface plasmons (LSP) which detect a single binding event and (2) propagating surface plasmons (PSP) which integrate a great number of simultaneously occurring binding events. We demonstrate that for the biomolecular interactions most relevant to biosensing the single-binding-event LSP approach is inferior to the integrating PSP approach. We estimate that the number of biorecognition elements available to interact with the analyte molecules would need to be, depending on the size of the analyte and parameters of the molecular interaction, in the order of 10 to 10(3) to increase the probability of the positive response of the LSP-based sensor to that of the PSP-based sensor.


Asunto(s)
Técnicas Biosensibles , Resonancia por Plasmón de Superficie , Microfluídica
8.
Artículo en Inglés | MEDLINE | ID: mdl-35239486

RESUMEN

In this paper, we monitored the accuracy of non-navigated application of repetitive Transcranial Magnetic Stimulation (rTMS) in 10 patients suffering from orofacial pain by using functional magnetic resonance (fMRI), computer modeling and numerical simulation. Through a unique process, each fMRI scan was used to define a Region of Interest (ROI) where the source of the orofacial pain was located, which was to be stimulated using rTMS. For each patient, MRI scans with a spatial resolution of 0.7 mm were converted into an anatomically accurate head model. The head model including the ROI was then co-registered with a model of the stimulation coil in an electromagnetic field numerical simulator. The accuracy of rTMS application was evaluated based on the calculations of electric field intensity distribution in the ROI. The research has yielded unique insight into ROIs (with average volume 904 mm3) in patients with orofacial pain and has also extended further possibilities of human head MRI image semi-automatic segmentation. According to the calculations performed, the average ROI volume that was stimulated by an electric field with an intensity of over 80 V/m was only 4.4%, with the maximum ROI volume being 20.5%. Furthermore, a numerical study of the impact of coil rotation and translation was performed. It demonstrated a) the optimal placement of the stimulation coil can significantly increase the volume of the stimulated ROI up to 60% and b) patients with orofacial pain would need precise coil positioning with a navigation error lower than 10 mm. Due to an acceptable proccessing time of up to 6 hours, described numerical simulation opens up new options for precise rTMS treatment planning. This planning platform together with patient-specific navigated rTMS, could lead to significant increase of treatment outcomes in patients suffering from orofacial pain.


Asunto(s)
Dolor Facial , Estimulación Magnética Transcraneal , Campos Electromagnéticos , Dolor Facial/terapia , Humanos , Imagen por Resonancia Magnética/métodos , Estimulación Magnética Transcraneal/métodos , Resultado del Tratamiento
9.
Cancers (Basel) ; 14(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36358714

RESUMEN

Thermal ablation is a well-known method used in interventional radiology to treat cancer. The treatment success is closely related to the exact catheter location in the treated area. Current navigation methods are based mostly on ultrasound or computed tomography. This work explores the possibility of tracking the catheter position during ablation treatment of hepatocellular carcinomas (HCC) using an ultra-wideband (UWB) antenna array and microwave radar imaging based on the "Delay and Sum" (DAS) algorithm. The feasibility was first numerically studied on a simple homogeneous liver model. A heterogeneous anthropomorphic 3D model of the treated region consisting of the main organs within the treated area was then used. Various standard radiofrequency ablation (RFA) catheters were placed virtually in the heterogeneous model. The location and orientation of the antenna elements of the developed imaging system and the applied frequency band were studied. Subsequently, an experimental setup consisting of a 3D printed homogeneous anthropomorphic model, eight UWB dipole antennas, and catheters was created and used in a series of measurements. The average accuracy determining the catheter position from simulated and experimental data was 3.88 ± 0.19 and 6.13 ± 0.66 mm, which are close to the accuracy of clinical navigation systems.

10.
Phys Med ; 101: 87-94, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35987024

RESUMEN

PURPOSE: Hyperthermia is a cancer treatment in which the target region is heated to temperatures of 40-44 °C usually applying external electromagnetic field sources. The behavior of the hyperthermia applicators (antennas) in clinical practice should be periodically checked with phantom experiments to verify the applicator's performance over time. The purpose of this study was to investigate the application of photogrammetry reconstructions of 3D applicator position in these quality control procedure measurements. METHODS: Photogrammetry reconstruction was applied at superficial hyperthermia scenario using the Lucite cone applicator (LCA) and phased-array heating in the head and neck region using the HYPERcollar3D. Wire-frame models of the entire measurement setups were created from multiple-view images and used for recreation of the setup inside 3D electromagnetic field simulation software. We evaluated applicator relation (Ra) between measured and simulated absolute specific absorption rate (SAR) for manually created and photogrammetry reconstructed simulation setups. RESULTS: We found a displacement of 7.9 mm for the LCA and 8.2 mm for the HYPERcollar3D setups when comparing manually created and photogrammetry reconstructed applicator models placements. Ra improved from 1.24 to 1.18 for the LCA and from 1.17 to 1.07 for the HYPERcollar3D when using photogrammetry reconstructed simulation setups. CONCLUSION: Photogrammetry reconstruction technique holds promise to improve measurement setup reconstruction and agreement between measured and simulated absolute SAR.


Asunto(s)
Hipertermia Inducida , Fantasmas de Imagen , Fotogrametría , Polimetil Metacrilato , Control de Calidad
11.
Artículo en Inglés | MEDLINE | ID: mdl-33301405

RESUMEN

The thermal effect of a novel effective electrical stimulation mapping (ESM) technique using an Ojemann's stimulation electrode in open craniotomy areas causes a nondestructive local increase in temperature. Another type of stimulating electrode is a subdural strip, routinely used in intraoperative electrocorticography (ECoG), which applies ESM in a covered subdural area over the motor cortex. ECoG electrode geometry produces a different electrical field, causing a different Joule heat distribution in tissue, one that is impossible to measure in subdural space. Therefore, the previous safety control study of the novel ESM technique needed to be extended to include an assessment of the thermal effect of ECoG strip electrodes. We adapted a previously well-validated numerical model and performed coupled complex electro-thermal transient simulations for short-time (28.4 ms) high-frequency (500 Hz) and hyperintense (peak 100 mA) ESM paradigm. The risk of heat-induced cellular damage was assessed by applying the Arrhenius equation integral on the computed time-dependent spatial distribution of temperature in the brain tissue during ESM stimulation and during the cooldown period. The results showed increases in temperature in the proximity around ECoG electrode discs in a safe range without destructive effects. As opposed to open craniotomy, subdural space is not cooled by the air; hence a higher - but still safe - induced temperature was observed. The presented simulation agrees with the previously published histopathological examination of the stimulated brain tissue, and confirms the safety of the novel ESM technique when applied using ECoG strip electrodes.


Asunto(s)
Mapeo Encefálico , Espacio Subdural , Encéfalo , Estimulación Eléctrica , Electrocorticografía , Electrodos Implantados , Electroencefalografía , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA