Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Development ; 149(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35993866

RESUMEN

Embryogenesis is supported by dynamic loops of cellular interactions. Here, we create a partial mouse embryo model to elucidate the principles of epiblast (Epi) and extra-embryonic endoderm co-development (XEn). We trigger naive mouse embryonic stem cells to form a blastocyst-stage niche of Epi-like cells and XEn-like cells (3D, hydrogel free and serum free). Once established, these two lineages autonomously progress in minimal medium to form an inner pro-amniotic-like cavity surrounded by polarized Epi-like cells covered with visceral endoderm (VE)-like cells. The progression occurs through reciprocal inductions by which the Epi supports the primitive endoderm (PrE) to produce a basal lamina that subsequently regulates Epi polarization and/or cavitation, which, in return, channels the transcriptomic progression to VE. This VE then contributes to Epi bifurcation into anterior- and posterior-like states. Similarly, boosting the formation of PrE-like cells within blastoids supports developmental progression. We argue that self-organization can arise from lineage bifurcation followed by a pendulum of induction that propagates over time.


Asunto(s)
Endodermo , Estratos Germinativos , Animales , Blastocisto , Diferenciación Celular , Linaje de la Célula/fisiología , Implantación del Embrión , Embrión de Mamíferos , Ratones
2.
Nature ; 557(7703): 106-111, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29720634

RESUMEN

The blastocyst (the early mammalian embryo) forms all embryonic and extra-embryonic tissues, including the placenta. It consists of a spherical thin-walled layer, known as the trophectoderm, that surrounds a fluid-filled cavity sheltering the embryonic cells 1 . From mouse blastocysts, it is possible to derive both trophoblast 2 and embryonic stem-cell lines 3 , which are in vitro analogues of the trophectoderm and embryonic compartments, respectively. Here we report that trophoblast and embryonic stem cells cooperate in vitro to form structures that morphologically and transcriptionally resemble embryonic day 3.5 blastocysts, termed blastoids. Like blastocysts, blastoids form from inductive signals that originate from the inner embryonic cells and drive the development of the outer trophectoderm. The nature and function of these signals have been largely unexplored. Genetically and physically uncoupling the embryonic and trophectoderm compartments, along with single-cell transcriptomics, reveals the extensive inventory of embryonic inductions. We specifically show that the embryonic cells maintain trophoblast proliferation and self-renewal, while fine-tuning trophoblast epithelial morphogenesis in part via a BMP4/Nodal-KLF6 axis. Although blastoids do not support the development of bona fide embryos, we demonstrate that embryonic inductions are crucial to form a trophectoderm state that robustly implants and triggers decidualization in utero. Thus, at this stage, the nascent embryo fuels trophectoderm development and implantation.


Asunto(s)
Blastocisto/citología , Células Madre Embrionarias/citología , Animales , Blastocisto/metabolismo , Proteína Morfogenética Ósea 4/farmacología , Autorrenovación de las Células , Ectodermo/citología , Ectodermo/metabolismo , Implantación del Embrión , Células Madre Embrionarias/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Factor 6 Similar a Kruppel/deficiencia , Factor 6 Similar a Kruppel/genética , Factor 6 Similar a Kruppel/metabolismo , Masculino , Ratones , Morfogénesis , Proteína Nodal/genética , Proteína Nodal/metabolismo , Proteína Nodal/farmacología , Transcriptoma , Trofoblastos/citología , Trofoblastos/metabolismo , Útero/citología , Útero/metabolismo
3.
Proc Natl Acad Sci U S A ; 109(18): 6886-91, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22511716

RESUMEN

Physical forces play a major role in the organization of developing tissues. During vascular development, physical forces originating from a fluid phase or from cells pulling on their environment can alter cellular signaling and the behavior of cells. Here, we observe how tissue deformation spatially modulates angiogenic signals and angiogenesis. Using soft lithographic templates, we assemble three-dimensional, geometric tissues. The tissues contract autonomously, change shape stereotypically and form patterns of vascular structures in regions of high deformations. We show that this emergence correlates with the formation of a long-range gradient of Vascular Endothelial Growth Factor (VEGF) in interstitial cells, the local overexpression of the corresponding receptor VEGF receptor 2 (VEGFR-2) and local differences in endothelial cells proliferation. We suggest that tissue contractility and deformation can induce the formation of gradients of angiogenic microenvironments which could contribute to the long-range patterning of the vascular system.


Asunto(s)
Neovascularización Fisiológica/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología , Actinas/metabolismo , Secuencia de Bases , Fenómenos Biomecánicos , Técnicas de Cocultivo , Cartilla de ADN/genética , Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Miosinas/metabolismo , Neovascularización Fisiológica/genética , Transducción de Señal/fisiología , Ingeniería de Tejidos , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/fisiología
4.
Adv Sci (Weinh) ; 11(4): e2304987, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37991133

RESUMEN

Combining high-throughput generation and high-content imaging of embryo models will enable large-scale screening assays in the fields of (embryo) toxicity, drug development, embryogenesis, and reproductive medicine. This study shows the continuous culture and in situ (i.e., in microwell) imaging-based readout of a 3D stem cell-based model of peri-implantation epiblast (Epi)/extraembryonic endoderm (XEn) development with an expanded pro-amniotic cavity (PAC) (E3.5 E5.5), namely XEn/EPiCs. Automated image analysis and supervised machine learning permit the identification of embryonic morphogenesis, tissue compartmentalization, cell differentiation, and consecutive classification. Screens with signaling pathway modulators at different time windows provide spatiotemporal information on their phenotypic effect on developmental processes leading to the formation of XEn/EPiCs. Exposure of the biological model in the microwell platform to pathway modulators at two time windows, namely 0-72 h and 48-120 h, show that Wnt and Fgf/MAPK pathway modulators affect Epi differentiation and its polarization, while modulation of BMP and Tgfß/Nodal pathway affects XEn specification and epithelialization. Further, their collective role is identified in the timing of the formation and expansion of PAC. The newly developed, scalable culture and analysis platform, thereby, provides a unique opportunity to quantitatively and systematically study effects of pathway modulators on early embryonic development.


Asunto(s)
Embrión de Mamíferos , Endodermo , Embarazo , Femenino , Humanos , Endodermo/metabolismo , Diferenciación Celular , Morfogénesis , Células Madre Embrionarias
5.
Adv Mater ; 36(25): e2313306, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593372

RESUMEN

Monochorionic twinning of human embryos increases the risk of complications during pregnancy. The rarity of such twinning events, combined with ethical constraints in human embryo research, makes investigating the mechanisms behind twinning practically infeasible. As a result, there is a significant knowledge gap regarding the origins and early phenotypic presentation of monochorionic twin embryos. In this study, a microthermoformed-based microwell screening platform is used to identify conditions that efficiently induce monochorionic twins in human stem cell-based blastocyst models, termed "twin blastoids". These twin blastoids contain a cystic GATA3+ trophectoderm-like epithelium encasing two distinct inner cell masses (ICMs). Morphological and morphokinetic analyses reveal that twinning occurs during the cavitation phase via splitting of the OCT4+ pluripotent core. Notably, each ICM in twin blastoids contains its own NR2F2+ polar trophectoderm-like region, ready for implantation. This is functionally tested in a microfluidic chip-based implantation assay with epithelial endometrium cells. Under defined flow regimes, twin blastoids show increased adhesion capacity compared to singleton blastoids, suggestive of increased implantation potential. In conclusion, the development of technology enabling large-scale formation of twin blastoids, coupled with high-sensitivity readout capabilities, presents an unprecedented opportunity for systematically exploring monochorionic twin formation and its impact on embryonic development.


Asunto(s)
Gemelización Monocigótica , Humanos , Femenino , Embarazo , Blastocisto/citología , Embrión de Mamíferos/citología , Corion/citología , Bioingeniería/métodos , Modelos Biológicos , Implantación del Embrión
6.
Front Cell Dev Biol ; 10: 838356, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359453

RESUMEN

Advances in the field of stem cell-based models have in recent years lead to the development of blastocyst-like structures termed blastoids. Blastoids can be used to study key events in mammalian pre-implantation development, as they mimic the blastocyst morphologically and transcriptionally, can progress to the post-implantation stage and can be generated in large numbers. Blastoids were originally developed using mouse pluripotent stem cells, and since several groups have successfully generated blastocyst models of the human system. Here we provide a comparison of the mouse and human protocols with the aim of deriving the core requirements for blastoid formation, discuss the models' current ability to mimic blastocysts and give an outlook on potential future applications.

7.
Adv Sci (Weinh) ; 8(8): 2004250, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33898195

RESUMEN

In recent years, stem cell-based models that reconstruct mouse and human embryogenesis have gained significant traction due to their near-physiological similarity to natural embryos. Embryo models can be generated in large numbers, provide accessibility to a variety of experimental tools such as genetic and chemical manipulation, and confer compatibility with automated readouts, which permits exciting experimental avenues for exploring the genetic and molecular principles of self-organization, development, and disease. However, the current embryo models recapitulate only snapshots within the continuum of embryonic development, allowing the progression of the embryonic tissues along a specific direction. Hence, to fully exploit the potential of stem cell-based embryo models, multiple important gaps in the developmental landscape need to be covered. These include recapitulating the lesser-explored interactions between embryonic and extraembryonic tissues such as the yolk sac, placenta, and the umbilical cord; spatial and temporal organization of tissues; and the anterior patterning of embryonic development. Here, it is detailed how combinations of stem cells and versatile bioengineering technologies can help in addressing these gaps and thereby extend the implications of embryo models in the fields of cell biology, development, and regenerative medicine.


Asunto(s)
Desarrollo Embrionario/fisiología , Células Madre Embrionarias/fisiología , Modelos Biológicos , Animales , Femenino , Humanos , Ratones , Embarazo
8.
Acta Biomater ; 57: 487-497, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28456657

RESUMEN

The surface topography of synthetic biomaterials is known to play a role in material-driven osteogenesis. Recent studies show that TGFß signalling also initiates osteogenic differentiation. TGFß signalling requires the recruitment of TGFß receptors (TGFßR) to the primary cilia. In this study, we hypothesize that the surface topography of calcium phosphate ceramics regulates stem cell morphology, primary cilia structure and TGFßR recruitment to the cilium associated with osteogenic differentiation. We developed a 2D system using two types of tricalcium phosphate (TCP) ceramic discs with identical chemistry. One sample had a surface topography at micron-scale (TCP-B, with a bigger surface structure dimension) whilst the other had a surface topography at submicron scale (TCP-S, with a smaller surface structure dimension). In the absence of osteogenic differentiation factors, human bone marrow stromal cells (hBMSCs) were more spread on TCP-S than on TCP-B with alterations in actin organization and increased primary cilia prevalence and length. The cilia elongation on TCP-S was similar to that observed on glass in the presence of osteogenic media and was followed by recruitment of transforming growth factor-ß RII (p-TGFß RII) to the cilia axoneme. This was associated with enhanced osteogenic differentiation of hBMSCs on TCP-S, as shown by alkaline phosphatase activity and gene expression for key osteogenic markers in the absence of additional osteogenic growth factors. Similarly, in vivo after a 12-week intramuscular implantation in dogs, TCP-S induced bone formation while TCP-B did not. It is most likely that the surface topography of calcium phosphate ceramics regulates primary cilia length and ciliary recruitment of p-TGFß RII associated with osteogenesis and bone formation. This bioengineering control of osteogenesis via primary cilia modulation may represent a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery applications. STATEMENT OF SIGNIFICANCE: The surface topography of synthetic biomaterials plays important roles in material-driven osteogenesis. The data presented herein have shown that the surface topography of calcium phosphate ceramics regulates mesenchymal stromal cells (e.g., human bone marrow mesenchymal stromal cells, hBMSCs) with respect to morphology, primary cilia structure and TGFßR recruitment to the cilium associated with osteogenic differentiation in vitro. Together with bone formation in vivo, our results suggested a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery by the bioengineering control of osteogenesis via primary cilia modulation.


Asunto(s)
Células de la Médula Ósea/metabolismo , Fosfatos de Calcio , Cerámica , Osteogénesis/efectos de los fármacos , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Animales , Células de la Médula Ósea/citología , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Cerámica/química , Cerámica/farmacología , Cilios/metabolismo , Perros , Humanos , Células del Estroma/citología , Células del Estroma/metabolismo
9.
Adv Mater ; 28(21): 4032-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27000493

RESUMEN

Material-free tissues are assembled using solely cells. Microstructured hydrogel templates and high content screening allow the formation of centimeter-scale tissues with precise architectures. Similar to developing tissues, these contract autonomously, controllably shift shape, self-scaffold by secreting extracellular matrix, and undergo morphogenesis.


Asunto(s)
Ingeniería de Tejidos , Matriz Extracelular , Hidrogeles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA