Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 576(7787): 477-481, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31827278

RESUMEN

Oncogenic activation of RAS is associated with the acquisition of a unique set of metabolic dependencies that contribute to tumour cell fitness. Cells that express oncogenic RAS are able to internalize and degrade extracellular protein via a fluid-phase uptake mechanism termed macropinocytosis1. There is increasing recognition of the role of this RAS-dependent process in the generation of free amino acids that can be used to support tumour cell growth under nutrient-limiting conditions2. However, little is known about the molecular steps that mediate the induction of macropinocytosis by oncogenic RAS. Here we identify vacuolar ATPase (V-ATPase) as an essential regulator of RAS-induced macropinocytosis. Oncogenic RAS promotes the translocation of V-ATPase from intracellular membranes to the plasma membrane via a pathway that requires the activation of protein kinase A by a bicarbonate-dependent soluble adenylate cyclase. Accumulation of V-ATPase at the plasma membrane is necessary for the cholesterol-dependent plasma-membrane association of RAC1, a prerequisite for the stimulation of membrane ruffling and macropinocytosis. These observations establish a link between V-ATPase trafficking and nutrient supply by macropinocytosis that could be exploited to curtail the metabolic adaptation capacity of RAS-mutant tumour cells.


Asunto(s)
Membrana Celular/enzimología , Proteína Oncogénica p21(ras)/metabolismo , Pinocitosis , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Bicarbonatos/metabolismo , Carcinogénesis , Línea Celular Tumoral , Membrana Celular/metabolismo , Colesterol/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal , Simportadores de Sodio-Bicarbonato/metabolismo
2.
Int J Cancer ; 144(10): 2465-2477, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30367463

RESUMEN

Different studies have shown that HPV16-positive OPSCC can be subdivided based on integration status (integrated, episomal and mixed forms). Because we showed that integration neither affects the levels of viral genes, nor those of virally disrupted human genes, a genome-wide screen was performed to identify human genes which expression is influenced by viral integration and have clinical relevance. Thirty-three fresh-frozen HPV-16 positive OPSCC samples with known integration status were analyzed by mRNA expression profiling. Among the genes of interest, Aldo-keto-reductases 1C1 and 1C3 (AKR1C1, AKR1C3) were upregulated in tumors with viral integration. Additionally, 141 OPSCC, including 48 HPV-positive cases, were used to validate protein expression by immunohistochemistry. Results were correlated with clinical and histopathological data. Non-hierarchical clustering resulted in two main groups differing in mRNA expression patterns, which interestingly corresponded with viral integration status. In OPSCC with integrated viral DNA, often metabolic pathways were deregulated with frequent upregulation of AKR1C1 and AKR1C3 transcripts. Survival analysis of 141 additionally immunostained OPSCC showed unfavorable survival rates for tumors with upregulation of AKR1C1 or AKR1C3 (both p <0.0001), both in HPV-positive (p ≤0.001) and -negative (p ≤0.017) tumors. OPSCC with integrated HPV16 show upregulation of AKR1C1 and AKR1C3 expression, which strongly correlates with poor survival rates. Also in HPV-negative tumors, upregulation of these proteins correlates with unfavorable outcome. Deregulated AKR1C expression has also been observed in other tumors, making these genes promising candidates to indicate prognosis. In addition, the availability of inhibitors of these gene products may be utilized for drug treatment.


Asunto(s)
20-Hidroxiesteroide Deshidrogenasas/genética , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/genética , Carcinoma de Células Escamosas/genética , Papillomavirus Humano 16/genética , Neoplasias Orofaríngeas/genética , Regulación hacia Arriba/genética , Integración Viral/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/virología , ADN Viral/genética , Femenino , Genes Virales/genética , Humanos , Masculino , Redes y Vías Metabólicas/genética , Persona de Mediana Edad , Neoplasias Orofaríngeas/patología , Neoplasias Orofaríngeas/virología , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Pronóstico , Tasa de Supervivencia
3.
Respir Res ; 19(1): 117, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29895291

RESUMEN

Human immunodeficiency virus (HIV) infection is associated with an increased risk of chronic obstructive pulmonary disease (COPD) independent of cigarette smoke exposure. Previous studies have demonstrated that decreased peripheral leukocyte telomere length is associated with HIV, suggesting an accelerated aging phenomenon. We demonstrate that this process of telomere shortening also occurs in the lungs, with significant decreases in telomere length observed in small airway epithelial cells collected during bronchoscopy. Molecular evidence of accelerated aging in the small airway epithelium of persons living with HIV may be one clue into the predisposition for chronic lung disease observed in this population.


Asunto(s)
Envejecimiento/genética , Infecciones por VIH/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Mucosa Respiratoria/fisiología , Homeostasis del Telómero/fisiología , Telómero/genética , Anciano , Envejecimiento/metabolismo , Estudios de Cohortes , Femenino , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , Humanos , Pulmón/patología , Pulmón/fisiología , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Mucosa Respiratoria/patología , Fumar/genética , Fumar/metabolismo , Fumar/patología , Telómero/metabolismo , Telómero/patología , Carga Viral/tendencias
4.
Respir Res ; 19(1): 140, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-30053882

RESUMEN

BACKGROUND: Persons living with human immunodeficiency virus (PLWH) face an increased burden of chronic obstructive pulmonary disease (COPD). Repeated pulmonary infections, antibiotic exposures, and immunosuppression may contribute to an altered small airway epithelium (SAE) microbiome. METHODS: SAE cells were collected from 28 PLWH and 48 HIV- controls through bronchoscopic cytologic brushings. DNA extracted from SAE cells was subjected to 16S rRNA amplification and sequencing. Comparisons of alpha and beta diversity between HIV+ and HIV- groups were performed and key operational taxonomic units (OTUs) distinguishing the two groups were identified using the Boruta feature selection after Random Forest Analysis. RESULTS: PLWH demonstrated significantly reduced Shannon diversity compared with HIV- volunteers (1.82 ± 0.10 vs. 2.20 ± 0.073, p = 0.0024). This was primarily driven by a reduction in bacterial richness (23.29 ± 2.75 for PLWH and 46.04 ± 3.716 for HIV-, p < 0.0001). Phyla distribution was significantly altered among PLWH, with an increase in relative abundance of Proteobacteria (p = 0.0003) and a decrease in Bacteroidetes (p = 0.0068) and Firmicutes (p = 0.0002). Six discriminative OTUs were found to distinguish PLWH from HIV- volunteers, aligning to Veillonellaceae, Fusobacterium, Verrucomicrobiaceae, Prevotella, Veillonella, and Campylobacter. CONCLUSIONS: Compared to HIV- controls, PLWH's SAE microbiome is marked by reduced bacterial diversity and richness with significant differences in community composition.


Asunto(s)
Infecciones por VIH/microbiología , Microbiota/fisiología , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Mucosa Respiratoria/microbiología , Mucosa Respiratoria/fisiología , Anciano , Broncoscopía/métodos , Estudios de Cohortes , Femenino , Infecciones por VIH/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología
5.
J Pathol ; 240(2): 161-72, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27357447

RESUMEN

Genes involved in fetal lung development are thought to play crucial roles in the malignant transformation of adult lung cells. Consequently, the study of lung tumour biology in the context of lung development has the potential to reveal key developmentally relevant genes that play critical roles in lung cancer initiation/progression. Here, we describe for the first time a comprehensive characterization of miRNA expression in human fetal lung tissue, with subsequent identification of 37 miRNAs in non-small cell lung cancer (NSCLC) that recapitulate their fetal expression patterns. Nuclear factor I/B (NFIB), a transcription factor essential for lung development, was identified as a potential frequent target for these 'oncofetal' miRNAs. Concordantly, analysis of NFIB expression in multiple NSCLC independent cohorts revealed its recurrent underexpression (in ∼40-70% of tumours). Interrogation of NFIB copy number, methylation, and mutation status revealed that DNA level disruption of this gene is rare, and further supports the notion that oncofetal miRNAs are likely the primary mechanism responsible for NFIB underexpression in NSCLC. Reflecting its functional role in regulating lung differentiation, low expression of NFIB was significantly associated with biologically more aggressive subtypes and, ultimately, poorer survival in lung adenocarcinoma patients. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Adenocarcinoma/genética , Neoplasias Pulmonares/genética , MicroARNs/metabolismo , Factores de Transcripción NFI/genética , Invasividad Neoplásica/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , MicroARNs/genética , Persona de Mediana Edad , Factores de Transcripción NFI/metabolismo , Invasividad Neoplásica/patología , Pronóstico , Tasa de Supervivencia
6.
Mol Cancer ; 15(1): 67, 2016 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-27784305

RESUMEN

Lung cancer is a leading cause of cancer-related deaths worldwide. Lung cancer risk factors, including smoking and exposure to environmental carcinogens, have been linked to chronic inflammation. An integral feature of inflammation is the activation, expansion and infiltration of diverse immune cell types, including CD4+ T cells. Within this T cell subset are immunosuppressive regulatory T (Treg) cells and pro-inflammatory T helper 17 (Th17) cells that act in a fine balance to regulate appropriate adaptive immune responses.In the context of lung cancer, evidence suggests that Tregs promote metastasis and metastatic tumor foci development. Additionally, Th17 cells have been shown to be an integral component of the inflammatory milieu in the tumor microenvironment, and potentially involved in promoting distinct lung tumor phenotypes. Studies have shown that the composition of Tregs and Th17 cells are altered in the tumor microenvironment, and that these two CD4+ T cell subsets play active roles in promoting lung cancer progression and metastasis.We review current knowledge on the influence of Treg and Th17 cells on lung cancer tumorigenesis, progression, metastasis and prognosis. Furthermore, we discuss the potential biological and clinical implications of the balance among Treg/Th17 cells in the context of the lung tumor microenvironment and highlight the potential prognostic function and relationship to metastasis in lung cancer.


Asunto(s)
Neoplasias Pulmonares/inmunología , Linfocitos T Reguladores/metabolismo , Células Th17/metabolismo , Animales , Progresión de la Enfermedad , Humanos , Ratones , Metástasis de la Neoplasia , Microambiente Tumoral
7.
BMC Pulm Med ; 16(1): 142, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27829448

RESUMEN

BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) is an important comorbidity in patients living with human immunodeficiency virus (HIV). Previous bacterial microbiome studies have shown increased abundance of specific bacterium, like Tropheryma whipplei, and no overall community differences. However, the host response to the lung microbiome is unknown in patients infected with HIV. METHODS: Two bronchial brush samples were obtained from 21 HIV-infected patients. One brush was used for bacterial microbiome analysis using the Illumina MiSeqTM platform, while the other was used to evaluate gene expression patterns of the host using the Affymetrix Human Gene ST 2.0 array. Weighted gene co-expression network analysis was used to determine the relationship between the bacterial microbiome and host gene expression response. RESULTS: The Shannon Diversity was inversely related to only one gene expression module (p = 0.02); whereas evenness correlated with five different modules (p ≤ 0.05). After FDR correction only the Firmicutes phylum was significantly correlated with any modules (FDR < 0.05). These modules were enriched for cilia, transcription regulation, and immune response. Specific operational taxonomic units (OTUs), such as OTU4 (Pasteurellaceae), were able to distinguish HIV patients with and without COPD and severe emphysema. CONCLUSION: These data support the hypothesis that the bacterial microbiome in HIV lungs is associated with specific host immune responses. Whether or not these responses are also seen in non-HIV infected individuals needs to be addressed in future studies.


Asunto(s)
Infecciones por VIH/complicaciones , Pulmón/microbiología , Microbiota , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Adulto , Anciano , Bacterias/clasificación , Células Epiteliales/citología , Femenino , Expresión Génica , Infecciones por VIH/microbiología , Humanos , Pulmón/citología , Masculino , Análisis por Micromatrices , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/inmunología , ARN Ribosómico 16S/genética , Tomografía Computarizada por Rayos X
8.
Int J Cancer ; 137(9): 2072-82, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25907283

RESUMEN

Microtubule affinity-regulating kinases (MARKs) are involved in several cellular functions but few studies have correlated MARK kinase expression with cancer, and none have explored their role in lung cancer. In this study, we identified MARK2 as frequently disrupted by DNA hypomethylation and copy gain, resulting in concordant overexpression in independent lung tumor cohorts and we demonstrate a role for MARK2 in lung tumor biology. Manipulation of MARK2 in lung cell lines revealed its involvement in cell viability and anchorage-independent growth. Analyses of both manipulated cell lines and clinical tumor specimens identified a potential role for MARK2 in cell cycle activation and DNA repair. Associations between MARK2 and the E2F, Myc/Max and NF-κB pathways were identified by luciferase assays and in-depth assessment of the NF-κB pathway suggests a negative association between MARK2 expression and NF-κB due to activation of non-canonical NF-κB signaling. Finally, we show that high MARK2 expression levels correlate with resistance to cisplatin, a standard first line chemotherapy for lung cancer. Collectively, our work supports a role for MARK2 in promoting malignant phenotypes of lung cancer and potentially modulating response to the DNA damaging chemotherapeutic, cisplatin.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Cisplatino/farmacología , Resistencia a Antineoplásicos , Neoplasias Pulmonares/enzimología , Proteínas Serina-Treonina Quinasas/fisiología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Daño del ADN , Reparación del ADN , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , FN-kappa B/metabolismo
9.
Genome Res ; 22(2): 188-95, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22301133

RESUMEN

The genomics era has yielded great advances in the understanding of cancer biology. At the same time, the immense complexity of the cancer genome has been revealed, as well as a striking heterogeneity at the whole-genome (or omics) level that exists between even histologically similar tumors. The vast accrual and public availability of multi-omics databases with associated clinical annotation including tumor histology, patient response, and outcome are a rich resource that has the potential to lead to rapid translation of high-throughput omics to improved overall survival. We focus on the unique advantages of a multidimensional approach to genomic analysis in this new high-throughput omics age and discuss the implications of the changing cancer demographic to translational omics research.


Asunto(s)
Genómica , Neoplasias/diagnóstico , Neoplasias/terapia , Proteómica , Investigación Biomédica Traslacional , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Modelos Animales de Enfermedad , Detección Precoz del Cáncer , Estudios de Asociación Genética , Humanos , Terapia Molecular Dirigida , Mutación , Neoplasias/genética , Pronóstico , Transducción de Señal
10.
Am J Respir Cell Mol Biol ; 50(5): 912-22, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24298892

RESUMEN

DNA methylation is an epigenetic modification that is highly disrupted in response to cigarette smoke and involved in a wide spectrum of malignant and nonmalignant diseases, but surprisingly not previously assessed in small airways of patients with chronic obstructive pulmonary disease (COPD). Small airways are the primary sites of airflow obstruction in COPD. We sought to determine whether DNA methylation patterns are disrupted in small airway epithelia of patients with COPD, and evaluate whether changes in gene expression are associated with these disruptions. Genome-wide methylation and gene expression analysis were performed on small airway epithelial DNA and RNA obtained from the same patient during bronchoscopy, using Illumina's Infinium HM27 and Affymetrix's Genechip Human Gene 1.0 ST arrays. To control for known effects of cigarette smoking on DNA methylation, methylation and gene expression profiles were compared between former smokers with and without COPD matched for age, pack-years, and years of smoking cessation. Our results indicate that aberrant DNA methylation is (1) a genome-wide phenomenon in small airways of patients with COPD, and (2) associated with altered expression of genes and pathways important to COPD, such as the NF-E2-related factor 2 oxidative response pathway. DNA methylation is likely an important mechanism contributing to modulation of genes important to COPD pathology. Because these methylation events may underlie disease-specific gene expression changes, their characterization is a critical first step toward the development of epigenetic markers and an opportunity for developing novel epigenetic therapeutic interventions for COPD.


Asunto(s)
Metilación de ADN , Enfermedad Pulmonar Obstructiva Crónica/genética , Anciano , Bronquios/metabolismo , ADN/genética , Epitelio/metabolismo , Femenino , Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , ARN/genética , Fumar/genética , Fumar/metabolismo
11.
BMC Cancer ; 14: 778, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25342220

RESUMEN

BACKGROUND: Cigarette smoke is associated with the majority of lung cancers: however, 25% of lung cancer patients are non-smokers, and half of all newly diagnosed lung cancer patients are former smokers. Lung tumors exhibit distinct epidemiological, clinical, pathological, and molecular features depending on smoking status, suggesting divergent mechanisms underlie tumorigenesis in smokers and non-smokers. MicroRNAs (miRNAs) are integral contributors to tumorigenesis and mediate biological responses to smoking. Based on the hypothesis that smoking-specific miRNA differences in lung adenocarcinomas reflect distinct tumorigenic processes selected by different smoking and non-smoking environments, we investigated the contribution of miRNA disruption to lung tumor biology and patient outcome in the context of smoking status. METHODS: We applied a whole transcriptome sequencing based approach to interrogate miRNA levels in 94 patient-matched lung adenocarcinoma and non-malignant lung parenchymal tissue pairs from current, former and never smokers. RESULTS: We discovered novel and distinct smoking status-specific patterns of miRNA and miRNA-mediated gene networks, and identified miRNAs that were prognostically significant in a smoking dependent manner. CONCLUSIONS: We conclude that miRNAs disrupted in a smoking status-dependent manner affect distinct cellular pathways and differentially influence lung cancer patient prognosis in current, former and never smokers. Our findings may represent promising biologically relevant markers for lung cancer prognosis or therapeutic intervention.


Asunto(s)
Adenocarcinoma/etiología , Adenocarcinoma/mortalidad , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/mortalidad , MicroARNs/genética , Fumar , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Adulto , Anciano , Análisis por Conglomerados , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Evaluación del Resultado de la Atención al Paciente , Pronóstico , Interferencia de ARN
12.
Mol Cancer ; 12(1): 124, 2013 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-24138990

RESUMEN

BACKGROUND: Reactive oxygen species contribute to normal thyroid function. The NRF2 oxidative response pathway is frequently and constitutively activated in multiple tumor types, including papillary thyroid carcinoma (PTC). Genetic mechanisms underlying NRF2 pathway activation in PTC are not fully understood. Thus, we aimed to determine whether inactivating patterns of DNA-level alterations affect genes encoding for individual NRF2 inhibitor complex components (CUL3/KEAP1/RBX1) occur in PTC. FINDINGS: Combined patterns of epi/genetic alterations for KEAP1/CUL3/RBX1 E3 ubiquitin-ligase complex components were simultaneously interrogated for a panel of 310 PTC cases and 40 adjacent non-malignant tissues. Data were obtained from The Cancer Genome Atlas project. Enrichment of NRF2 pathway activation was assessed by gene-set enrichment analysis using transcriptome data. Our analyses revealed that PTC sustain a strikingly high frequency (80.6%) of disruption to multiple component genes of the NRF2 inhibitor complex. Hypermethylation is the predominant inactivating mechanism primarily affecting KEAP1 (70.6%) and CUL3 (20%), while copy number loss mostly affects RBX1 (16.8%). Concordantly, NRF2-associated gene expression signatures are positively and significantly enriched in PTC. CONCLUSIONS: The KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex is almost ubiquitously affected by multiple DNA-level mechanisms and downstream NRF2 pathway targets are activated in PTC. Given the importance of this pathway to normal thyroid function as well as to cancer; targeted inhibition of NRF2 regulators may impact strategies for therapeutic intervention involving this pathway.


Asunto(s)
Carcinoma/enzimología , Factor 2 Relacionado con NF-E2/genética , Neoplasias de la Tiroides/enzimología , Ubiquitina-Proteína Ligasas/fisiología , Carcinoma/genética , Carcinoma Papilar , Proteínas Portadoras/metabolismo , Proteínas Cullin/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Mutación , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides/genética
13.
Front Immunol ; 14: 1275890, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936700

RESUMEN

The growth and metastasis of solid tumours is known to be facilitated by the tumour microenvironment (TME), which is composed of a highly diverse collection of cell types that interact and communicate with one another extensively. Many of these interactions involve the immune cell population within the TME, referred to as the tumour immune microenvironment (TIME). These non-cell autonomous interactions exert substantial influence over cell behaviour and contribute to the reprogramming of immune and stromal cells into numerous pro-tumourigenic phenotypes. The study of some of these interactions, such as the PD-1/PD-L1 axis that induces CD8+ T cell exhaustion, has led to the development of breakthrough therapeutic advances. Yet many common analyses of the TME either do not retain the spatial data necessary to assess cell-cell interactions, or interrogate few (<10) markers, limiting the capacity for cell phenotyping. Recently developed digital pathology technologies, together with sophisticated bioimage analysis programs, now enable the high-resolution, highly-multiplexed analysis of diverse immune and stromal cell markers within the TME of clinical specimens. In this article, we review the tumour-promoting non-cell autonomous interactions in the TME and their impact on tumour behaviour. We additionally survey commonly used image analysis programs and highly-multiplexed spatial imaging technologies, and we discuss their relative advantages and limitations. The spatial organization of the TME varies enormously between patients, and so leveraging these technologies in future studies to further characterize how non-cell autonomous interactions impact tumour behaviour may inform the personalization of cancer treatment.​.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Diagnóstico por Imagen , Linfocitos T CD8-positivos , Procesamiento de Imagen Asistido por Computador
14.
Cell Oncol (Dordr) ; 46(6): 1659-1673, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37318751

RESUMEN

BACKGROUND: Recent studies have uncovered the near-ubiquitous presence of microbes in solid tumors of diverse origins. Previous literature has shown the impact of specific bacterial species on the progression of cancer. We propose that local microbial dysbiosis enables certain cancer phenotypes through provisioning of essential metabolites directly to tumor cells. METHODS: 16S rDNA sequencing of 75 patient lung samples revealed the lung tumor microbiome specifically enriched for bacteria capable of producing methionine. Wild-type (WT) and methionine auxotrophic (metA mutant) E. coli cells were used to condition cell culture media and the proliferation of lung adenocarcinoma (LUAD) cells were measured using SYTO60 staining. Further, colony forming assay, Annexin V Staining, BrdU, AlamarBlue, western blot, qPCR, LINE microarray and subcutaneous injection with methionine modulated feed were used to analyze cellular proliferation, cell-cycle, cell death, methylation potential, and xenograft formation under methionine restriction. Moreover, C14-labeled glucose was used to illustrate the interplay between tumor cells and bacteria. RESULTS/DISCUSSION: Our results show bacteria found locally within the tumor microenvironment are enriched for methionine synthetic pathways, while having reduced S-adenosylmethionine metabolizing pathways. As methionine is one of nine essential amino acids that mammals are unable to synthesize de novo, we investigated a potentially novel function for the microbiome, supplying essential nutrients, such as methionine, to cancer cells. We demonstrate that LUAD cells can utilize methionine generated by bacteria to rescue phenotypes that would otherwise be inhibited due to nutrient restriction. In addition to this, with WT and metA mutant E. coli, we saw a selective advantage for bacteria with an intact methionine synthetic pathway to survive under the conditions induced by LUAD cells. These results would suggest that there is a potential bi-directional cross-talk between the local microbiome and adjacent tumor cells. In this study, we focused on methionine as one of the critical molecules, but we also hypothesize that additional bacterial metabolites may also be utilized by LUAD. Indeed, our radiolabeling data suggest that other biomolecules are shared between cancer cells and bacteria. Thus, modulating the local microbiome may have an indirect effect on tumor development, progression, and metastasis.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Animales , Humanos , Metionina/genética , Metionina/metabolismo , Escherichia coli/metabolismo , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/patología , Racemetionina/metabolismo , Proliferación Celular/genética , S-Adenosilmetionina/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Mamíferos/metabolismo , Microambiente Tumoral
15.
Cancers (Basel) ; 13(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072436

RESUMEN

MicroRNAs (miRNAs) play vital roles in the regulation of normal developmental pathways. However, cancer cells can co-opt these miRNAs, and the pathways that they regulate, to drive pro-tumourigenic phenotypes. Characterization of the miRNA transcriptomes of fetal organs is essential for identifying these oncofetal miRNAs, but it has been limited by fetal sample availability. As oncofetal miRNAs are absent from healthy adult lungs, they represent ideal targets for developing diagnostic and therapeutic strategies. We conducted small RNA sequencing of a rare collection of 25 human fetal lung (FL) samples and compared them to two independent cohorts (n = 140, n = 427), each comprised of adult non-neoplastic lung (ANL) and lung adenocarcinoma (LUAD) samples. We identified 13 oncofetal miRNAs that were expressed in FL and LUAD but not in ANL. These oncofetal miRNAs are potential biomarkers for LUAD detection (AUC = 0.963). Five of these miRNAs are derived from the imprinted C14MC miRNA cluster at the 14q32 locus, which has been associated with cancer development and abnormal fetal and placental development. Additionally, we observed the pulmonary expression of 44 previously unannotated miRNAs. The sequencing of these fetal lung samples also provides a baseline resource against which aberrant samples can be compared.

16.
Cancer Res ; 80(5): 1088-1101, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31915130

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is an aggressive malignancy typified by a highly stromal and weakly immunogenic tumor microenvironment that promotes tumor evolution and contributes to therapeutic resistance. Here, we demonstrate that PDA tumor cell-derived proinflammatory cytokine IL1ß is essential for the establishment of the protumorigenic PDA microenvironment. Tumor cell-derived IL1ß promoted the activation and secretory phenotype of quiescent pancreatic stellate cells and established an immunosuppressive milieu mediated by M2 macrophages, myeloid-derived suppressor cells, CD1dhiCD5+ regulatory B cells, and Th17 cells. Loss of tumor cell-derived IL1 signaling in tumor stroma enabled intratumoral infiltration and activation of CD8+ cytotoxic T cells, attenuated growth of pancreatic neoplasia, and conferred survival advantage to PDA-bearing mice. Accordingly, antibody-mediated neutralization of IL1ß significantly enhanced the antitumor activity of α-PD-1 and was accompanied by increased tumor infiltration of CD8+ T cells. Tumor cell expression of IL1ß in vivo was driven by microbial-dependent activation of toll-like receptor 4 (TLR4) signaling and subsequent engagement of the NLRP3 inflammasome. Collectively, these findings identify a hitherto unappreciated role for tumor cell-derived IL1ß in orchestrating an immune-modulatory program that supports pancreatic tumorigenesis. SIGNIFICANCE: These findings identify a new modality for immune evasion in PDA that depends on IL1ß production by tumor cells through TLR4-NLRP3 inflammasome activation. Targeting this axis might provide an effective PDA therapeutic strategy.


Asunto(s)
Carcinogénesis/inmunología , Carcinoma Ductal Pancreático/inmunología , Interleucina-1beta/metabolismo , Neoplasias Pancreáticas/inmunología , Escape del Tumor/inmunología , Animales , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral/trasplante , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Células Epiteliales , Femenino , Humanos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/inmunología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Ratones Transgénicos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Conductos Pancreáticos/citología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Cultivo Primario de Células , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 4/metabolismo , Escape del Tumor/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
17.
Methods Mol Biol ; 556: 141-53, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19488876

RESUMEN

Alteration in epigenetic regulation of gene expression is a common event in human cancer and developmental disease. CpG island hypermethylation and consequent gene silencing is observed for many genes involved in a diverse range of functions and pathways that become deregulated in the disease state. Comparative profiling of the methylome is therefore useful in disease gene discovery. The ability to identify epigenetic alterations on a global scale is imperative to understanding the patterns of gene silencing that parallel disease progression. Methylated DNA immunoprecipitation (MeDIP) is a technique that isolates methylated DNA fragments by immunoprecipitating with 5'-methylcytosine-specific antibodies. The enriched methylated DNA can then be analyzed in a locus-specific manner using PCR assay or in a genome-wide fashion by comparative genomic hybridization against a sample without MeDIP enrichment. This article describes the detailed protocol for MeDIP and hybridization of MeDIP DNA to a whole-genome tiling path BAC array.


Asunto(s)
Metilación de ADN , ADN/análisis , Inmunoprecipitación/métodos , Hibridación Genómica Comparativa/instrumentación , Hibridación Genómica Comparativa/métodos , Islas de CpG , Epigénesis Genética , Humanos , Inmunoprecipitación/instrumentación , Neoplasias/genética , Reproducibilidad de los Resultados
18.
BMC Bioinformatics ; 9: 422, 2008 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-18840289

RESUMEN

BACKGROUND: High throughput microarray technologies have afforded the investigation of genomes, epigenomes, and transcriptomes at unprecedented resolution. However, software packages to handle, analyze, and visualize data from these multiple 'omics disciplines have not been adequately developed. RESULTS: Here, we present SIGMA2, a system for the integrative genomic multi-dimensional analysis of cancer genomes, epigenomes, and transcriptomes. Multi-dimensional datasets can be simultaneously visualized and analyzed with respect to each dimension, allowing combinatorial integration of the different assays belonging to the different 'omics. CONCLUSION: The identification of genes altered at multiple levels such as copy number, loss of heterozygosity (LOH), DNA methylation and the detection of consequential changes in gene expression can be concertedly performed, establishing SIGMA2 as a novel tool to facilitate the high throughput systems biology analysis of cancer.


Asunto(s)
ADN de Neoplasias/genética , Epigénesis Genética/genética , Perfilación de la Expresión Génica/métodos , Neoplasias/genética , Programas Informáticos , Factores de Transcripción/genética , Interfaz Usuario-Computador , Algoritmos , Animales , Gráficos por Computador , Regulación Neoplásica de la Expresión Génica/genética , Genómica/métodos , Humanos , Integración de Sistemas
19.
Pharmacogenomics ; 9(2): 215-34, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18370850

RESUMEN

Alteration in epigenetic regulation of gene expression is a frequent event in human cancer. CpG island hypermethylation and downregulation is observed for many genes involved in a diverse range of functions and pathways that become deregulated in cancer. Paradoxically, global hypomethylation is a hallmark of almost all human cancers. Methylation profiles can be used as molecular markers to distinguish subtypes of cancers and potentially as predictors of disease outcome and treatment response. The role of epigenetics in diagnosis and treatment is likely to increase as mechanisms leading to the transcriptional silencing of genes involved in human cancers are revealed. Drugs that inhibit methylation are used both as a research tool to assess reactivation of genes silenced in cancer by hypermethylation and in the treatment of some hematological malignancies. Multidimensional analysis, evaluating genetic and epigenetic alterations on a global and locus-specific scale in human cancer, is imperative to understand mechanisms driving changes in gene dosage, and as a means towards identifying pathways driving cancer initiation and progression.


Asunto(s)
Neoplasias/genética , Neoplasias/patología , Animales , Metilación de ADN , Progresión de la Enfermedad , Histonas/genética , Histonas/metabolismo , Humanos , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA