Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34479997

RESUMEN

Neuroinflammation is a pathophysiological hallmark of multiple sclerosis and has a close mechanistic link to neurodegeneration. Although this link is potentially targetable, robust translatable models to reliably quantify and track neuroinflammation in both mice and humans are lacking. The choroid plexus (ChP) plays a pivotal role in regulating the trafficking of immune cells from the brain parenchyma into the cerebrospinal fluid (CSF) and has recently attracted attention as a key structure in the initiation of inflammatory brain responses. In a translational framework, we here address the integrity and multidimensional characteristics of the ChP under inflammatory conditions and question whether ChP volumes could act as an interspecies marker of neuroinflammation that closely interrelates with functional impairment. Therefore, we explore ChP characteristics in neuroinflammation in patients with multiple sclerosis and in two experimental mouse models, cuprizone diet-related demyelination and experimental autoimmune encephalomyelitis. We demonstrate that ChP enlargement-reconstructed from MRI-is highly associated with acute disease activity, both in the studied mouse models and in humans. A close dependency of ChP integrity and molecular signatures of neuroinflammation is shown in the performed transcriptomic analyses. Moreover, pharmacological modulation of the blood-CSF barrier with natalizumab prevents an increase of the ChP volume. ChP enlargement is strongly linked to emerging functional impairment as depicted in the mouse models and in multiple sclerosis patients. Our findings identify ChP characteristics as robust and translatable hallmarks of acute and ongoing neuroinflammatory activity in mice and humans that could serve as a promising interspecies marker for translational and reverse-translational approaches.


Asunto(s)
Plexo Coroideo/diagnóstico por imagen , Esclerosis Múltiple/fisiopatología , Enfermedades Neuroinflamatorias/diagnóstico por imagen , Adulto , Animales , Barrera Hematoencefálica/fisiología , Encéfalo/fisiología , Plexo Coroideo/inmunología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/diagnóstico por imagen , Proteómica/métodos
2.
Breast Cancer Res ; 25(1): 56, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221619

RESUMEN

BACKGROUND: Response assessment of targeted cancer therapies is becoming increasingly challenging, as it is not adequately assessable with conventional morphological and volumetric analyses of tumor lesions. The tumor microenvironment is particularly constituted by tumor vasculature which is altered by various targeted therapies. The aim of this study was to noninvasively assess changes in tumor perfusion and vessel permeability after targeted therapy in murine models of breast cancer with divergent degrees of malignancy. METHODS: Low malignant 67NR or highly malignant 4T1 tumor-bearing mice were treated with either the multi-kinase inhibitor sorafenib or immune checkpoint inhibitors (ICI, combination of anti-PD1 and anti-CTLA4). Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with i.v. injection of albumin-binding gadofosveset was conducted on a 9.4 T small animal MRI. Ex vivo validation of MRI results was achieved by transmission electron microscopy, immunohistochemistry and laser ablation-inductively coupled plasma-mass spectrometry. RESULTS: Therapy-induced changes in tumor vasculature differed between low and highly malignant tumors. Sorafenib treatment led to decreased tumor perfusion and endothelial permeability in low malignant 67NR tumors. In contrast, highly malignant 4T1 tumors demonstrated characteristics of a transient window of vascular normalization with an increase in tumor perfusion and permeability early after therapy initiation, followed by decreased perfusion and permeability parameters. In the low malignant 67NR model, ICI treatment also mediated vessel-stabilizing effects with decreased tumor perfusion and permeability, while ICI-treated 4T1 tumors exhibited increasing tumor perfusion with excessive vascular leakage. CONCLUSION: DCE-MRI enables noninvasive assessment of early changes in tumor vasculature after targeted therapies, revealing different response patterns between tumors with divergent degrees of malignancy. DCE-derived tumor perfusion and permeability parameters may serve as vascular biomarkers that allow for repetitive examination of response to antiangiogenic treatment or immunotherapy.


Asunto(s)
Neoplasias , Animales , Ratones , Sorafenib , Inmunoterapia , Albúminas , Cognición , Microambiente Tumoral
3.
Cell Mol Neurobiol ; 43(7): 3511-3526, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37219662

RESUMEN

The BAF (BRG1/BRM-associated factor) chromatin remodelling complex is essential for the regulation of DNA accessibility and gene expression during neuronal differentiation. Mutations of its core subunit SMARCB1 result in a broad spectrum of pathologies, including aggressive rhabdoid tumours or neurodevelopmental disorders. Other mouse models have addressed the influence of a homo- or heterozygous loss of Smarcb1, yet the impact of specific non-truncating mutations remains poorly understood. Here, we have established a new mouse model for the carboxy-terminal Smarcb1 c.1148del point mutation, which leads to the synthesis of elongated SMARCB1 proteins. We have investigated its impact on brain development in mice using magnetic resonance imaging, histology, and single-cell RNA sequencing. During adolescence, Smarcb11148del/1148del mice demonstrated rather slow weight gain and frequently developed hydrocephalus including enlarged lateral ventricles. In embryonic and neonatal stages, mutant brains did not differ anatomically and histologically from wild-type controls. Single-cell RNA sequencing of brains from newborn mutant mice revealed that a complete brain including all cell types of a physiologic mouse brain is formed despite the SMARCB1 mutation. However, neuronal signalling appeared disturbed in newborn mice, since genes of the AP-1 transcription factor family and neurite outgrowth-related transcripts were downregulated. These findings support the important role of SMARCB1 in neurodevelopment and extend the knowledge of different Smarcb1 mutations and their associated phenotypes.


Asunto(s)
Hidrocefalia , Factor de Transcripción AP-1 , Animales , Ratones , Hidrocefalia/genética , Mutación/genética , Mutación Puntual/genética , Transducción de Señal , Factor de Transcripción AP-1/genética
4.
Ann Neurol ; 89(4): 666-685, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33368582

RESUMEN

OBJECTIVE: Limbic encephalitis (LE) comprises a spectrum of inflammatory changes in affected brain structures including the presence of autoantibodies and lymphoid cells. However, the potential of distinct lymphocyte subsets alone to elicit key clinicopathological sequelae of LE potentially inducing temporal lobe epilepsy (TLE) with chronic spontaneous seizures and hippocampal sclerosis (HS) is unresolved. METHODS: Here, we scrutinized pathogenic consequences emerging from CD8+ T cells targeting hippocampal neurons by recombinant adeno-associated virus-mediated expression of the model-autoantigen ovalbumin (OVA) in CA1 neurons of OT-I/RAG1-/- mice (termed "OVA-CD8+ LE model"). RESULTS: Viral-mediated antigen transfer caused dense CD8+ T cell infiltrates confined to the hippocampal formation starting on day 5 after virus transduction. Flow cytometry indicated priming of CD8+ T cells in brain-draining lymph nodes preceding hippocampal invasion. At the acute model stage, the inflammatory process was accompanied by frequent seizure activity and impairment of hippocampal memory skills. Magnetic resonance imaging scans at day 7 of the OVA-CD8+ LE model revealed hippocampal edema and blood-brain barrier disruption that converted into atrophy until day 40. CD8+ T cells specifically targeted OVA-expressing, SIINFEKL-H-2Kb -positive CA1 neurons and caused segmental apoptotic neurodegeneration, astrogliosis, and microglial activation. At the chronic model stage, mice exhibited spontaneous recurrent seizures and persisting memory deficits, and the sclerotic hippocampus was populated with CD8+ T cells escorted by NK cells. INTERPRETATION: These data indicate that a CD8+ T-cell-initiated attack of distinct hippocampal neurons is sufficient to induce LE converting into TLE-HS. Intriguingly, the role of CD8+ T cells exceeds neurotoxic effects and points to their major pathogenic role in TLE following LE. ANN NEUROL 2021;89:666-685.


Asunto(s)
Linfocitos T CD8-positivos/patología , Epilepsia del Lóbulo Temporal/etiología , Epilepsia del Lóbulo Temporal/patología , Encefalitis Límbica/complicaciones , Encefalitis Límbica/patología , Animales , Barrera Hematoencefálica/patología , Región CA1 Hipocampal/patología , Epilepsia del Lóbulo Temporal/psicología , Hipocampo/patología , Proteínas de Homeodominio/genética , Encefalitis Límbica/psicología , Ganglios Linfáticos/patología , Imagen por Resonancia Magnética , Trastornos de la Memoria/etiología , Trastornos de la Memoria/psicología , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/patología , Ovalbúmina/genética , Ovalbúmina/inmunología , Fragmentos de Péptidos/genética , Convulsiones/genética , Convulsiones/patología
5.
Neuroimage ; 245: 118626, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34637903

RESUMEN

For fMRI in animal models, the combination of low-dose anesthetic, isoflurane (ISO), and the sedative medetomidine (MED) has recently become an advocated regimen to achieve stable neuronal states and brain networks in rats that are required for reliable task-induced BOLD fMRI. However, in mice the temporal stability of neuronal states and networks in resting-state (rs)-fMRI experiments during the combined ISO/MED regimen has not been systematically investigated. Using a multimodal approach with optical calcium (Ca2+) recordings and rs-fMRI, we investigated cortical neuronal/astrocytic Ca2+activity states and brain networks at multiple time points while switching from anesthesia with 1% ISO to a combined ISO/MED regimen. We found that cortical activity states reached a steady-state 45 min following start of MED infusion as indicated by stable Ca2+ transients. Similarly, rs-networks were not statistically different between anesthesia with ISO and the combined ISO/MED regimen 45 and 100 min after start of MED. Importantly, during the transition time we identified changed rs-network signatures that likely reflect the different mode of action of the respective anesthetic; these included a dose-dependent increase in cortico-cortical functional connectivity (FC) presumably caused by reduction of ISO concentration and decreased FC in subcortical arousal nuclei due to MED infusion. Furthermore, we report detection of visual stimulation-induced BOLD fMRI during the stable ISO/MED neuronal state 45 min after induction. Based on our findings, we recommend a 45-minute waiting period after switching from ISO anesthesia to the combined ISO/MED regimen before performing rs- or task-induced fMRI experiments.


Asunto(s)
Anestésicos/farmacología , Mapeo Encefálico/métodos , Isoflurano/farmacología , Imagen por Resonancia Magnética/métodos , Medetomidina/farmacología , Anestésicos/administración & dosificación , Animales , Isoflurano/administración & dosificación , Medetomidina/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Modelos Animales
6.
Eur J Neurosci ; 54(6): 5951-5967, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34355442

RESUMEN

For a long time, mice have been classified as adults with completely mature brains at 8 weeks of age, but recent research suggests that developmental brain changes occur for up to 6 months. In particular, adolescence coincides with dramatic changes of neuronal structure and function in the brain that influence the connectivity between areas like hippocampus and medial prefrontal cortex (mPFC). Neuronal development and plasticity are regulated in part by the palmitoyl acyltransferase ZDHHC7, which modulates structural connectivity between hippocampus and mPFC. The aim of the current study was to investigate whether developmental changes take place in hippocampus and mPFC microstructure even after 8 weeks of age and whether deficiency of ZDHHC7 impacts such age-dependent alterations. Altogether, 46 mice at 11, 14 or 17 weeks of age with a genetic Zdhhc7 knockout (KO) or wild type (WT) were analysed with neuroimaging and diffusion tensor-based fibre tractography. The hippocampus and mPFC regions were compared regarding fibre metrics, supplemented by volumetric and immunohistological analyses of the hippocampus. In WT animals, we identified age-dependent changes in hippocampal fibre lengths that followed a U-shaped pattern, whereas in mPFC, changes were linear. In Zdhhc7-deficient animals, the fibre statistics were reduced in both regions, whereas the hippocampus volume and the intensities of myelin and neurofilament were higher in 11-week-old KO mice compared to WTs. Our results confirmed ongoing changes of microstructure in mice up to 17 weeks old and demonstrate that deleting the Zdhhc7 gene impairs fibre development, suggesting that palmitoylation is important in this process.


Asunto(s)
Aciltransferasas , Corteza Prefrontal , Aciltransferasas/genética , Animales , Encéfalo , Hipocampo , Ratones , Ratones Noqueados
7.
Neuroimage ; 208: 116446, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31846759

RESUMEN

For a reliable estimation of neuronal activation based on BOLD fMRI measurements an accurate model of the hemodynamic response is essential. Since a large part of basic neuroscience research is based on small animal data, it is necessary to characterize a hemodynamic response function (HRF) which is optimized for small animals. Therefore, we have determined and investigated the HRFs of rats obtained under a variety of experimental conditions in the primary somatosensory cortex. Measurements were performed on animals of different sex and strain, under different anesthetics, with and without ventilation and using different stimulation modalities. All modalities of stimulation used in this study induced neuronal activity in the primary somatosensory cortex or in subcortical regions. Since the HRFs of the BOLD responses in the primary somatosensory cortex showed a close concordance for the different conditions, we were able to determine a cortical rat HRF. This HRF is based on 143 BOLD measurements of 76 rats and can be used for statistical parametric mapping. It showed substantially faster progression than the human HRF, with a maximum after 2.8 ± 0.8 s, and a following undershoot after 6.1 ± 3.7 s. If the rat HRF was used statistical analysis of rat data showed a significantly improved detection performance in the somatosensory cortex in comparison to the commonly used HRF based on measurements in humans.


Asunto(s)
Neuroimagen Funcional/métodos , Imagen por Resonancia Magnética/métodos , Acoplamiento Neurovascular/fisiología , Corteza Somatosensorial/fisiología , Animales , Femenino , Neuroimagen Funcional/normas , Imagen por Resonancia Magnética/normas , Masculino , Optogenética , Estimulación Física , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Corteza Somatosensorial/diagnóstico por imagen
8.
J Neuroinflammation ; 17(1): 186, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32532336

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by inflammatory and neurodegenerative processes. Despite demyelination being a hallmark of the disease, how it relates to neurodegeneration has still not been completely unraveled, and research is still ongoing into how these processes can be tracked non-invasively. Magnetic resonance imaging (MRI) derived brain network characteristics, which closely mirror disease processes and relate to functional impairment, recently became important variables for characterizing immune-mediated neurodegeneration; however, their histopathological basis remains unclear. METHODS: In order to determine the MRI-derived correlates of myelin dynamics and to test if brain network characteristics derived from diffusion tensor imaging reflect microstructural tissue reorganization, we took advantage of the cuprizone model of general demyelination in mice and performed longitudinal histological and imaging analyses with behavioral tests. By introducing cuprizone into the diet, we induced targeted and consistent demyelination of oligodendrocytes, over a period of 5 weeks. Subsequent myelin synthesis was enabled by reintroduction of normal food. RESULTS: Using specific immune-histological markers, we demonstrated that 2 weeks of cuprizone diet induced a 52% reduction of myelin content in the corpus callosum (CC) and a 35% reduction in the neocortex. An extended cuprizone diet increased myelin loss in the CC, while remyelination commenced in the neocortex. These histologically determined dynamics were reflected by MRI measurements from diffusion tensor imaging. Demyelination was associated with decreased fractional anisotropy (FA) values and increased modularity and clustering at the network level. MRI-derived modularization of the brain network and FA reduction in key anatomical regions, including the hippocampus, thalamus, and analyzed cortical areas, were closely related to impaired memory function and anxiety-like behavior. CONCLUSION: Network-specific remyelination, shown by histology and MRI metrics, determined amelioration of functional performance and neuropsychiatric symptoms. Taken together, we illustrate the histological basis for the MRI-driven network responses to demyelination, where increased modularity leads to evolving damage and abnormal behavior in MS. Quantitative information about in vivo myelination processes is mirrored by diffusion-based imaging of microstructural integrity and network characteristics.


Asunto(s)
Encéfalo/patología , Enfermedades Desmielinizantes/patología , Red Nerviosa/patología , Remielinización/fisiología , Animales , Encéfalo/efectos de los fármacos , Quelantes/toxicidad , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Imagen de Difusión Tensora , Femenino , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/patología
9.
Magn Reson Med ; 84(3): 1404-1415, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32077523

RESUMEN

PURPOSE: Dynamic contrast-enhanced MRI can be used in pharmacokinetic models to quantify functional parameters such as perfusion and permeability. However, precise quantification in preclinical models is challenged by the difficulties to dynamically measure the true arterial blood contrast agent concentration. We propose a novel approach toward a precise and experimentally feasible method to derive the arterial input function from DCE-MRI in mice. METHODS: Arterial blood was surgically shunted from the femoral artery to the tail vein and led through an extracorporeal circulation that resided on the head of brain tumor-bearing mice inside the FOV of a 9.4T MRI scanner. Dynamic 3D-FLASH scanning was performed after injection of gadobutrol with an effective resolution of 0.175 × 0.175 × 1 mm and a temporal resolution of 4 seconds. Pharmacokinetic modeling was performed using the extended Tofts and two-compartment exchange model. RESULTS: Arterial input functions measured inside the extracorporeal circulation showed little noise, small interindividual variance, and typical curve shapes. Ex vivo and mass spectrometry validation measurements documented the influence of shunt flow velocity and hematocrit on estimation of contrast agent concentrations. Modeling of tumors and muscles allowed fitting of the recorded dynamic concentrations, resulting in quantitative plausible parameters. CONCLUSION: The extracorporeal circulation allows deriving the contrast agent dynamics in arterial blood with high robustness and at acceptable experimental effort from DCE-MRI, previously not achievable in mice. It sets the basis for quantitative precise pharmacokinetic modeling in small animals to enhance the translatability of preclinical DCE-MRI measurements to patients.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Animales , Arterias/diagnóstico por imagen , Medios de Contraste , Circulación Extracorporea , Humanos , Ratones , Reproducibilidad de los Resultados
10.
Nano Lett ; 19(11): 7908-7917, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31556617

RESUMEN

Iron oxide nanoparticles (ION) are highly sensitive probes for magnetic resonance imaging (MRI) that have previously been used for in vivo cell tracking and have enabled implementation of several diagnostic tools to detect and monitor disease. However, the in vivo MRI signal of ION can overlap with the signal from endogenous iron, resulting in a lack of detection specificity. Therefore, the long-term fate of administered ION remains largely unknown, and possible tissue deposition of iron cannot be assessed with established methods. Herein, we combine nonradioactive 57Fe-ION MRI with ex vivo laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging, enabling unambiguous differentiation between endogenous iron (56Fe) and iron originating from applied ION in mice. We establish 57Fe-ION as an in vivo MRI sensor for cell tracking in a mouse model of subcutaneous inflammation and for assessing the long-term fate of 57Fe-ION. Our approach resolves the lack of detection specificity in ION imaging by unambiguously recording a 57Fe signature.


Asunto(s)
Compuestos Férricos/análisis , Inflamación/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Espectrometría de Masas/métodos , Nanopartículas/análisis , Animales , Rastreo Celular/métodos , Hierro/análisis , Isótopos de Hierro/análisis , Ratones
11.
Neuroimage ; 195: 89-103, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30930308

RESUMEN

Most studies involving BOLD fMRI in basic neuroscience research are conducted with anesthetized animals. This study investigates neural and hemodynamic activity through a combination of experiments comprising BOLD fMRI, optical calcium recordings and ASL in vivo. Patch clamp experiments of neurons were conducted to evaluate electrophysiological correlates of neural activity in vitro. Various anesthetic conditions embracing numerous anesthetic depths evoked by different concentrations of isoflurane (ISO) and different degrees of hypercapnia under a constant stimulus were investigated. We observed that different anesthetic conditions had major impact on the results obtained, particularly that anesthesia could cause a massive divergence of different experimental modalities. In ventilated animals, robust BOLD responses were detectable even with relatively deep anesthesia, while in non-ventilated animals, BOLD responses were not detectable under these conditions. This was most likely due to hypercapnia caused by respiratory depression, as in ventilated animals administered CO2 had the same effect. This observation agreed with measurements of perfusion, which showed that inhaled CO2 increased perfusion significantly, while ISO did not. In optical calcium measurements, higher concentrations of ISO decreased spontaneous neural activity, but not stimulus-evoked responses. This observation was explained by a generally lower excitability of neurons under ISO, which suppressed spontaneous activity, and consequently left more neurons available to fire synchronously in response to a stimulus. Interpreting this phenomenon as an integrated signal of independent single neurons was supported by patch clamp experiments as the number of action potentials (APs) per stimulus was decreased by addition of CO2. Addition of ISO on the other hand had no significant effect. Our results provide an explanation on the cellular level for anesthesia-dependent observations in previous studies of task-induced BOLD and resting state connectivity. They further inform selection of the adequate anesthetic regimen for a given combination of modalities.


Asunto(s)
Anestésicos por Inhalación/farmacología , Encéfalo/efectos de los fármacos , Isoflurano/farmacología , Imagen por Resonancia Magnética , Animales , Femenino , Hipercapnia/fisiopatología , Imagen por Resonancia Magnética/métodos , Modelos Animales , Neuronas/efectos de los fármacos , Ratas , Ratas Endogámicas F344 , Respiración Artificial/métodos
12.
Ann Neurol ; 83(5): 1003-1015, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29665155

RESUMEN

OBJECTIVE: Neurological recovery after stroke mainly depends on the location of the lesion. A substantial portion of strokes affects the brainstem. However, patterns of neural plasticity following brainstem ischemia are almost unknown. METHODS: Here, we established a rat brainstem ischemia model that resembles key features of the human disease and investigated mechanisms of neural plasticity, including neurogenesis and axonal sprouting as well as secondary neurodegeneration. RESULTS: Spontaneous functional recovery was accompanied by a distinct pattern of axonal sprouting, for example, an increased bilateral fiber outgrowth from the corticorubral tract to the respective contralesional red nucleus suggesting a compensatory role of extrapyramidal pathways after damage to pyramid tracts within the brainstem. Using different markers for DNA replication, we showed that the brainstem displays a remarkable ability to undergo specific plastic cellular changes after injury, highlighting a yet unknown pattern of neurogenesis. Neural progenitor cells proliferated within the dorsal brainstem and migrated toward the lesion, whereas neurogenesis in classic neurogenic niches, the subventricular zone of the lateral ventricle and the hippocampus, remained, in contrast to what is known from hemispheric stroke, unaffected. These beneficial changes were paralleled by long-term degenerative processes, that is, corticospinal fiber loss superior to the lesion, degeneration of spinal tracts, and a decreased neuron density within the ipsilesional substantia nigra and the contralesional red nucleus that might have limited further functional recovery. INTERPRETATION: Our findings provide knowledge of elementary plastic adaptions after brainstem stroke, which is fundamental for understanding the human disease and for the development of new treatments. Ann Neurol 2018;83:1003-1015.


Asunto(s)
Isquemia Encefálica/fisiopatología , Tronco Encefálico/fisiopatología , Plasticidad Neuronal/fisiología , Accidente Cerebrovascular/fisiopatología , Animales , Isquemia Encefálica/patología , Lateralidad Funcional/fisiología , Masculino , Corteza Motora/fisiopatología , Neuronas/patología , Tractos Piramidales/patología , Ratas Wistar , Recuperación de la Función/fisiología
13.
Neuroimage ; 164: 144-154, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28012967

RESUMEN

The combination of optogenetic control and fMRI readout in the brain is increasingly used to assess neuronal networks and underlying signal processing. However, how exactly optogenetic activation or inhibition reproduces normal physiological input has not been fully unraveled. To assess details of temporal dynamics of the hemodynamic response, temporal resolution in rodent fMRI is often not sufficient. Recent advances in human fMRI using faster acquisition schemes cannot be easily translated to small animals due to smaller dimensions, fast physiological motion, and higher sensitivity to artefacts. Here, we applied a one dimensional line scanning acquisition with 50ms temporal resolution in rat somatosensory cortex. We observed that optogenetic activation reproduces the hemodynamic response upon sensory stimulation, but shows a 160 to 340ms earlier onset of the response. This difference is explained by direct activation of all opsin-expressing and illuminated cortical layers, while hemodynamic response to sensory stimulation is delayed during intracortical transmission between cortical layers. Our results confirm that optogenetic activation is a valid model for physiological neuronal input, and that differences in temporal behavior of only a few hundred milliseconds can be resolved in rodent fMRI.


Asunto(s)
Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Optogenética/métodos , Corteza Somatosensorial/fisiología , Animales , Femenino , Ratas , Ratas Endogámicas F344
14.
Magn Reson Med ; 77(1): 126-136, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-26778283

RESUMEN

PURPOSE: Optogenetic fMRI (ofMRI) is a novel tool in neurophysiology and neuroimaging. The method is prone to light-induced artifacts, two of which were investigated in this study. METHODS: ofMRI was performed in rats using two excitatory opsins (ChR2 and C1V1TT ) virally transduced in somatosensory cortex or thalamus. Heat-induced apparent BOLD activation at the site of the optical fiber and stimulation light-induced activation of the visual pathways were investigated, and control experiments for these two artifacts were established. RESULTS: Specific optogenetic BOLD activation was observed with both opsins, accompanied by BOLD in the visual pathways. Unspecific heat-induced BOLD was ruled out by a control experiment employing low-level constant illumination in addition to pulsed optogenetic stimulation. Activation of the visual pathways was confirmed to be physiological by direct visual stimulation of the eyes and was suppressed by additional low-level constant light to the eyes. Light inside the brain was identified as one source of the BOLD signal observed in the visual pathways. CONCLUSION: ofMRI is a method of tremendous potential, but unspecific activations in fMRI not caused by the activation of opsins must be avoided or recognized as such. The control experiments presented here allow for validating the specificity of optogenetic stimulation. Magn Reson Med 77:126-136, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Optogenética/métodos , Animales , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Femenino , Oxígeno/sangre , Estimulación Luminosa , Ratas , Procesamiento de Señales Asistido por Computador
15.
Neuroimage ; 127: 110-122, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26631818

RESUMEN

Underlying mechanisms of hyperalgesia differ with regard to the pain entities, which are well-modeled in animals for systematic studies. However, neuroimaging in different animal pain models often lacks clinical relevance and consistency with behavioral studies, which hinders the translation of results. Whereas mechanical stimulation is commonly used to explore hyperalgesia in animals and humans, functional magnetic resonance imaging (fMRI) studies frequently use electrical or heat stimuli to evaluate brain responses relevant to pain and hyperalgesia. To characterize the magnetic resonance (MR) representations of mechanical hyperalgesia after incision and inflammation, we aimed to investigate whole brain functional activities during innocuous and noxious mechanical or electrical stimulation (IMS/NMS; IES/NES), as well as metabolite levels in the thalamus of rats at rest and during electrical stimulation. In behavioral experiments, animal models of pain showed significant mechanical hyperalgesia, with a peak 24h after both injuries, but lasting longer after inflammation. In imaging experiments, mechanical and electrical stimulation revealed a biphasic BOLD response upon noxious stimulation in pain models. Analyses of the BOLD signal changes revealed significantly higher activation in pain models compared to sham animals. Furthermore, significant differences were present upon NMS (but not NES) between incision and inflammation models in all the studied regions except for contralateral somatosensory cortex (S1) and cerebellum (Cb) (F's>4.14, p's<0.05). Additionally, MS (but not ES) induced unexpected bilateral activation of S1 in all three animal groups. Finally, MR spectroscopy (MRS) in the thalamus showed higher concentrations of gamma-aminobutyric acid in both pain models at rest and during stimulation. We conclude that employment of MS in fMRI studies could provide an informative correlate of mechanical hyperalgesia in inflammatory and incisional pain models and might be used to further assess mechanisms and treatments relevant for these clinical pain states.


Asunto(s)
Encéfalo/fisiopatología , Hiperalgesia/fisiopatología , Dolor/fisiopatología , Animales , Miembro Posterior/lesiones , Procesamiento de Imagen Asistido por Computador , Inflamación/fisiopatología , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Dolor/etiología , Ratas , Ratas Sprague-Dawley
16.
Eur J Neurosci ; 43(10): 1352-65, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26950181

RESUMEN

Parkinson's disease is a slowly progressing neurodegenerative disorder caused by loss of dopaminergic neurons in the substantia nigra (SN), leading to severe impairment in motor and non-motor functions. Endogenous subventricular zone (SVZ) neural stem cells constantly give birth to new cells that might serve as a possible source for regeneration in the adult brain. However, neurodegeneration is accompanied by neuroinflammation and dopamine depletion, potentially compromising regeneration. We therefore employed in vivo imaging methods to study striatal deafferentation (N-ω-fluoropropyl-2ß-carbomethoxy-3ß-(4-[(123) I]iodophenyl)nortropane single photon emission computed tomography, DaTscan(™) ) and neuroinflammation in the SN and striatum (N,N-diethyl-2-(2-(4-(2-[(18) F]fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide positron emission tomography, [(18) F]DPA-714 PET) in the intranigral 6-hydroxydopamine Parkinson's disease mouse model. Additionally, we transduced cells in the SVZ with a lentivirus encoding firefly luciferase and followed migration of progenitor cells in the SVZ-olfactory bulb axis via bioluminescence imaging under disease and control conditions. We found that activation of microglia in the SN is an acute process accompanying the degeneration of dopaminergic cell bodies in the SN. Dopaminergic deafferentation of the striatum does not influence the generation of doublecortin-positive neuroblasts in the SVZ, but generates chronic astrogliosis in the nigrostriatal system.


Asunto(s)
Cuerpo Estriado/patología , Neuronas Dopaminérgicas/patología , Encefalitis/patología , Gliosis/complicaciones , Neurogénesis , Enfermedad de Parkinson/patología , Sustancia Negra/patología , Animales , Astrocitos/patología , Proliferación Celular , Cuerpo Estriado/efectos de los fármacos , Modelos Animales de Enfermedad , Encefalitis/complicaciones , Células HEK293 , Humanos , Mediciones Luminiscentes , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Microglía/patología , Vías Nerviosas/patología , Vías Nerviosas/fisiología , Células-Madre Neurales/patología , Células-Madre Neurales/fisiología , Oxidopamina/toxicidad , Enfermedad de Parkinson/complicaciones , Tomografía de Emisión de Positrones , Sustancia Negra/efectos de los fármacos
17.
Eur J Nucl Med Mol Imaging ; 43(9): 1673-83, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26975402

RESUMEN

PURPOSE: Resistance to bevacizumab (BEV) in glioblastoma is believed to occur via activation of molecular networks including the mTOR/PI3K pathway. Using an MR/PET molecular imaging biomarker approach, we investigated the response to combining BEV with the mTOR/PI3K inhibitor BEZ235. METHODS: Tumours were established by orthotopically implanting U87MG-luc2 cells in mice. Animals were treated with BEZ235 and/or BEV, and imaged using diffusion-weighted-MRI, T2-weighted and T2*-weighted before and after administration of superparamagnetic iron oxide contrast agent. Maps for changes in relaxation rates (ΔR2, ΔR2* and apparent diffusion coefficient) were calculated. Vessel size index and microvessel density index were derived. 3'-Deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT) PET and O-(2-[(18)F]fluoroethyl)-L-tyrosine ([(18)F]FET) PET were further performed and tumour endothelium/proliferation markers assessed by immunohistochemistry. RESULTS: Treatment with BEV resulted in a pronounced decrease in tumour volume (T2-weighted MRI). No additive effect on tumour volume was observed with the BEV/BEZ235 combination compared with BEV monotherapy. The Ki67 proliferation index and [(18)F]FLT uptake studies were used to support the observations. Using ΔR2* and ΔR2 values, respectively, the BEV/BEZ235 combination significantly reduced tumour microvessel volume in comparison to BEV alone. Decreased microvessel density index was further observed in animals treated with the combination, supported by von Willebrand factor (vWF) immunohistochemistry. [(18)F]FET uptake was decreased following treatment with BEV alone, but was not further reduced following treatment with the combination. vWF immunohistochemistry analysis showed that the mean tumour vessel size was increased in all cohorts. CONCLUSION: Assessing MR imaging biomarker parameters together with [(18)F]FET and [(18)F]FLT PET provided information on mechanism of action of the drug combination and clues as to potential clinical responses. Following translation to clinical use, treatment with a BEV/BEZ235 combination could reduce peritumoral oedema obviating the requirement for steroids. The use of hypothesis-driven molecular imaging studies facilitates the preclinical evaluation of drug response. Studies of this kind may more accurately predict the clinical potential of the BEV/BEZ235 combination regimen as a novel therapeutic approach in oncology.


Asunto(s)
Bevacizumab/farmacología , Glioblastoma/patología , Imidazoles/farmacología , Imagen por Resonancia Magnética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Tomografía de Emisión de Positrones , Quinolinas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Transporte Biológico/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Interacciones Farmacológicas , Femenino , Glioblastoma/irrigación sanguínea , Glioblastoma/diagnóstico por imagen , Glioblastoma/metabolismo , Humanos , Ratones , Microvasos/efectos de los fármacos , Microvasos/patología , Microvasos/fisiopatología , Imagen Multimodal , Inhibidores de Proteínas Quinasas/farmacología , Carga Tumoral/efectos de los fármacos , Tirosina/análogos & derivados , Tirosina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Magn Reson Imaging ; 42(6): 1759-64, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26012876

RESUMEN

PURPOSE: To evaluate between-site agreement of apparent diffusion coefficient (ADC) measurements in preclinical magnetic resonance imaging (MRI) systems. MATERIALS AND METHODS: A miniaturized thermally stable ice-water phantom was devised. ADC (mean and interquartile range) was measured over several days, on 4.7T, 7T, and 9.4T Bruker, Agilent, and Magnex small-animal MRI systems using a common protocol across seven sites. Day-to-day repeatability was expressed as percent variation of mean ADC between acquisitions. Cross-site reproducibility was expressed as 1.96 × standard deviation of percent deviation of ADC values. RESULTS: ADC measurements were equivalent across all seven sites with a cross-site ADC reproducibility of 6.3%. Mean day-to-day repeatability of ADC measurements was 2.3%, and no site was identified as presenting different measurements than others (analysis of variance [ANOVA] P = 0.02, post-hoc test n.s.). Between-slice ADC variability was negligible and similar between sites (P = 0.15). Mean within-region-of-interest ADC variability was 5.5%, with one site presenting a significantly greater variation than the others (P = 0.0013). CONCLUSION: Absolute ADC values in preclinical studies are comparable between sites and equipment, provided standardized protocols are employed.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/instrumentación , Imagen de Difusión por Resonancia Magnética/veterinaria , Aumento de la Imagen/instrumentación , Interpretación de Imagen Asistida por Computador/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Europa (Continente) , Fantasmas de Imagen/veterinaria , Fantasmas de Imagen/virología , Estados Unidos
20.
Arthritis Rheum ; 65(9): 2290-300, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23740547

RESUMEN

OBJECTIVE: To generate doxycycline-inducible human tumor necrosis factor α (TNFα)-transgenic mice to overcome a major disadvantage of existing transgenic mice with constitutive expression of TNFα, which is the limitation in crossing them with various knockout or transgenic mice. METHODS: A transgenic mouse line that expresses the human TNFα cytokine exclusively after doxycycline administration was generated and analyzed for the onset of diseases. RESULTS: Doxycycline-inducible human TNFα-transgenic mice developed an inflammatory arthritis- and psoriasis-like phenotype, with fore and hind paws being prominently affected. The formation of "sausage digits" with characteristic involvement of the distal interphalangeal joints and nail malformation was observed. Synovial hyperplasia, enthesitis, cartilage and bone alterations, formation of pannus tissue, and inflammation of the skin epidermis and nail matrix appeared as early as 1 week after the treatment of mice with doxycycline and became aggravated over time. The abrogation of human TNFα expression by the removal of doxycycline 6 weeks after beginning stimulation resulted in fast resolution of the most advanced macroscopic and histologic disorders, and 3-6 weeks later, only minimal signs of disease were visible. CONCLUSION: Upon doxycycline administration, the doxycycline-inducible human TNFα-transgenic mouse displays the major features of inflammatory arthritis. It represents a unique animal model for studying the molecular mechanisms of arthritis, especially the early phases of disease genesis and tissue remodeling steps upon abrogation of TNFα expression. Furthermore, unlimited crossing of doxycycline-inducible human TNFα-transgenic mice with various knockout or transgenic mice opens new possibilities for unraveling the role of various signaling molecules acting in concert with TNFα.


Asunto(s)
Artritis Experimental/genética , Artritis Psoriásica/genética , Factor de Necrosis Tumoral alfa/genética , Animales , Artritis Experimental/metabolismo , Artritis Experimental/patología , Artritis Psoriásica/metabolismo , Artritis Psoriásica/patología , Cartílago/metabolismo , Cartílago/patología , Inflamación/patología , Articulaciones/metabolismo , Articulaciones/patología , Ratones , Ratones Transgénicos , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA