Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Annu Rev Microbiol ; 69: 323-40, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26488276

RESUMEN

The mechanism by which the cholesterol-dependent cytolysins (CDCs) assemble their giant ß-barrel pore in cholesterol-rich membranes has been the subject of intense study in the past two decades. A combination of structural, biophysical, and biochemical analyses has revealed deep insights into the series of complex and highly choreographed secondary and tertiary structural transitions that the CDCs undergo to assemble their ß-barrel pore in eukaryotic membranes. Our knowledge of the molecular details of these dramatic structural changes in CDCs has transformed our understanding of how giant pore complexes are assembled and has been critical to our understanding of the mechanisms of other important classes of pore-forming toxins and proteins across the kingdoms of life. Finally, there are tantalizing hints that the CDC pore-forming mechanism is more sophisticated than previously imagined and that some CDCs are employed in pore-independent processes.


Asunto(s)
Bacterias Grampositivas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/química , Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Citotoxinas/química , Humanos , Modelos Moleculares , Estructura Secundaria de Proteína
2.
Proc Natl Acad Sci U S A ; 112(7): 2204-9, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25646411

RESUMEN

ß-Barrel pore-forming toxins (ßPFTs) form an obligatory oligomeric prepore intermediate before the formation of the ß-barrel pore. The molecular components that control the critical prepore-to-pore transition remain unknown for ßPFTs. Using the archetype ßPFT perfringolysin O, we show that E183 of each monomer within the prepore complex forms an intermolecular electrostatic interaction with K336 of the adjacent monomer on completion of the prepore complex. The signal generated throughout the prepore complex by this interaction irrevocably commits it to the formation of the membrane-inserted giant ß-barrel pore. This interaction supplies the free energy to overcome the energy barrier (determined here to be ∼ 19 kcal/mol) to the prepore-to-pore transition by the coordinated disruption of a critical interface within each monomer. These studies provide the first insight to our knowledge into the molecular mechanism that controls the prepore-to-pore transition for a ßPFT.


Asunto(s)
Colesterol/metabolismo , Electricidad Estática , Estreptolisinas/metabolismo , Proteínas Bacterianas/metabolismo , Simulación de Dinámica Molecular , Mutación , Espectrometría de Fluorescencia , Temperatura
3.
J Biol Chem ; 290(29): 17733-17744, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26032415

RESUMEN

The majority of cholesterol-dependent cytolysins (CDCs) utilize cholesterol as a membrane receptor, whereas a small number are restricted to the GPI-anchored protein CD59 for initial membrane recognition. Two cholesterol-binding CDCs, perfringolysin O (PFO) and streptolysin O (SLO), were found to exhibit strikingly different binding properties to cholesterol-rich natural and synthetic membranes. The structural basis for this difference was mapped to one of the loops (L3) in the membrane binding interface that help anchor the toxin monomers to the membrane after receptor (cholesterol) binding by the membrane insertion of its amino acid side chains. A single point mutation in this loop conferred the binding properties of SLO to PFO and vice versa. Our studies strongly suggest that changing the side chain structure of this loop alters its equilibrium between membrane-inserted and uninserted states, thereby affecting the overall binding affinity and total bound toxin. Previous studies have shown that the lipid environment of cholesterol has a dramatic effect on binding and activity. Combining this data with the results of our current studies on L3 suggests that the structure of this loop has evolved in the different CDCs to preferentially direct binding to cholesterol in different lipid environments. Finally, the efficiency of ß-barrel pore formation was inversely correlated with the increased binding and affinity of the PFO L3 mutant, suggesting that selection of a compatible lipid environment impacts the efficiency of membrane insertion of the ß-barrel pore.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Toxinas Bacterianas/metabolismo , Membrana Celular/microbiología , Colesterol/metabolismo , Citotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Estreptolisinas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Línea Celular , Membrana Celular/metabolismo , Citotoxinas/química , Proteínas Hemolisinas/química , Liposomas/metabolismo , Ratones , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína , Estreptolisinas/química
4.
PLoS Pathog ; 10(9): e1004353, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25188225

RESUMEN

Streptococcus pneumoniae produces the pore-forming toxin pneumolysin (PLY), which is a member of the cholesterol-dependent cytolysin (CDC) family of toxins. The CDCs recognize and bind the 3ß-hydroxyl group of cholesterol at the cell surface, which initiates membrane pore formation. The cholesterol transport lipoproteins, which carry cholesterol in their outer monolayer, are potential off-pathway binding targets for the CDCs and are present at significant levels in the serum and the interstitial spaces of cells. Herein we show that cholesterol carried specifically by the ApoB-100-containing lipoprotein particles (CH-ApoB-100) in the mouse, but not that carried by human or guinea pig particles, is a potent inhibitor of the PLY pore-forming mechanism. Cholesterol present in the outer monolayer of mouse ApoB-100 particles is recognized and bound by PLY, which stimulates premature assembly of the PLY oligomeric complex thereby inactivating PLY. These studies further suggest that the vast difference in the inhibitory capacity of mouse CH-ApoB-100 and that of the human and the guinea pig is due to differences in the presentation of cholesterol in the outer monolayer of their ApoB-100 particles. Therefore mouse CH-ApoB-100 represents a significant innate CDC inhibitor that is absent in humans, which may underestimate the contribution of CDCs to human disease when utilizing mouse models of disease.


Asunto(s)
Apolipoproteína B-100/metabolismo , Colesterol/metabolismo , Hemólisis/efectos de los fármacos , Lipoproteínas/metabolismo , Estreptolisinas/antagonistas & inhibidores , Estreptolisinas/farmacología , Animales , Anticuerpos Neutralizantes/sangre , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/farmacología , Membrana Celular/metabolismo , Cobayas , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
5.
J Infect Dis ; 209(7): 1116-25, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24041791

RESUMEN

BACKGROUND: Pneumococcus, meningococcus, and Haemophilus influenzae cause a similar spectrum of infections in the ear, lung, blood, and brain. They share cross-reactive antigens that bind to the laminin receptor of the blood-brain barrier as a molecular basis for neurotropism, and this step in pathogenesis was addressed in vaccine design. METHODS: Biologically active peptides derived from choline-binding protein A (CbpA) of pneumococcus were identified and then genetically fused to L460D pneumolysoid. The fusion construct was tested for vaccine efficacy in mouse models of nasopharyngeal carriage, otitis media, pneumonia, sepsis, and meningitis. RESULTS: The CbpA peptide-L460D pneumolysoid fusion protein was more broadly immunogenic than pneumolysoid alone, and antibodies were active in vitro against Streptococcus pneumoniae, Neisseria meningitidis, and H. influenzae. Passive and active immunization protected mice from pneumococcal carriage, otitis media, pneumonia, bacteremia, meningitis, and meningococcal sepsis. CONCLUSIONS: The CbpA peptide-L460D pneumolysoid fusion protein was broadly protective against pneumococcal infection, with the potential for additional protection against other meningeal pathogens.


Asunto(s)
Proteínas Bacterianas/inmunología , Portador Sano/prevención & control , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/inmunología , Estreptolisinas/inmunología , Toxoides/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Proteínas Bacterianas/genética , Protección Cruzada , Modelos Animales de Enfermedad , Femenino , Haemophilus influenzae/inmunología , Ratones , Ratones Endogámicos BALB C , Neisseria meningitidis/inmunología , Vacunas Neumococicas/administración & dosificación , Vacunas Neumococicas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Streptococcus pneumoniae/inmunología , Estreptolisinas/genética , Toxoides/genética , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
6.
mBio ; 10(2)2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015325

RESUMEN

The cholesterol-dependent cytolysin (CDC) genes are present in bacterial species that span terrestrial, vertebrate, and invertebrate niches, which suggests that they have evolved to function under widely different environmental conditions. Using a combination of biophysical and crystallographic approaches, we reveal that the relative stability of an intramolecular interface in the archetype CDC perfringolysin O (PFO) plays a central role in regulating its pore-forming properties. The disruption of this interface allows the formation of the membrane spanning ß-barrel pore in all CDCs. We show here that the relative strength of the stabilizing forces at this interface directly impacts the energy barrier posed by the transition state for pore formation, as reflected in the Arrhenius activation energy (Ea) for pore formation. This change directly impacts the kinetics and temperature dependence of pore formation. We further show that the interface structure in a CDC from a terrestrial species enables it to function efficiently across a wide range of temperatures by minimizing changes in the strength of the transition state barrier to pore formation. These studies establish a paradigm that CDCs, and possibly other ß-barrel pore-forming proteins/toxins, can evolve significantly different pore-forming properties by altering the stability of this transitional interface, which impacts the kinetic parameters and temperature dependence of pore formation.IMPORTANCE The cholesterol-dependent cytolysins (CDCs) are the archetype for the superfamily of oligomeric pore-forming proteins that includes the membrane attack complex/perforin (MACPF) family of immune defense proteins and the stonefish venom toxins (SNTX). The CDC/MACPF/SNTX family exhibits a common protein fold, which forms a membrane-spanning ß-barrel pore. We show that changing the relative stability of an extensive intramolecular interface within this fold, which is necessarily disrupted to form the large ß-barrel pore, dramatically alters the kinetic and temperature-dependent properties of CDC pore formation. These studies show that the CDCs and other members of the CDC/MACPF/SNTX superfamily have the capacity to significantly alter their pore-forming properties to function under widely different environmental conditions encountered by these species.


Asunto(s)
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Toxinas Bacterianas/genética , Fenómenos Químicos , Cristalografía por Rayos X , Análisis Mutacional de ADN , Proteínas Hemolisinas/genética , Cinética , Simulación de Dinámica Molecular , Proteínas Citotóxicas Formadoras de Poros/genética , Temperatura
7.
Curr Opin Microbiol ; 26: 48-52, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26025132

RESUMEN

Pore-forming proteins (PFPs) encompass a broad family of proteins that are used for virulence or immune defense. Members of the cholesterol-dependent cytolysins (CDCs) and membrane attack complex/perforin (MACPF) family of PFPs form large ß-barrel pores in the membrane. The CDC/MACPF proteins contain a characteristic four-stranded ß-sheet that is flanked by two α-helical bundles, which unfold to form two transmembrane ß-hairpins. Apicomplexan eukaryotic parasites express CDC/MACPFs termed perforin-like proteins (PLPs). Here we review recent studies that provide key insights into the assembly and regulation of the Apicomplexan PLP (ApiMACPF) molecular pore-forming mechanisms, which are necessary for the osmotically driven rupture of the parasitophorous vacuole and host cell membrane, and cell traversal by these parasites.


Asunto(s)
Apicomplexa/metabolismo , Perforina/metabolismo , Interacciones Huésped-Patógeno , Sustancias Macromoleculares , Perforina/química , Conformación Proteica , Multimerización de Proteína
8.
Toxins (Basel) ; 7(5): 1702-21, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-26008232

RESUMEN

The anaerobic bacterium Clostridium perfringens expresses multiple toxins that promote disease development in both humans and animals. One such toxin is perfringolysin O (PFO, classically referred to as θ toxin), a pore-forming cholesterol-dependent cytolysin (CDC). PFO is secreted as a water-soluble monomer that recognizes and binds membranes via cholesterol. Membrane-bound monomers undergo structural changes that culminate in the formation of an oligomerized prepore complex on the membrane surface. The prepore then undergoes conversion into the bilayer-spanning pore measuring approximately 250-300 Šin diameter. PFO is expressed in nearly all identified C. perfringens strains and harbors interesting traits that suggest a potential undefined role for PFO in disease development. Research has demonstrated a role for PFO in gas gangrene progression and bovine necrohemorrhagic enteritis, but there is limited data available to determine if PFO also functions in additional disease presentations caused by C. perfringens. This review summarizes the known structural and functional characteristics of PFO, while highlighting recent insights into the potential contributions of PFO to disease pathogenesis.


Asunto(s)
Toxinas Bacterianas/toxicidad , Clostridium perfringens , Proteínas Hemolisinas/toxicidad , Animales , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Clostridium perfringens/genética , Clostridium perfringens/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Humanos
9.
Sci Rep ; 5: 14352, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26403197

RESUMEN

Pore-forming proteins are weapons often used by bacterial pathogens to breach the membrane barrier of target cells. Despite their critical role in infection important structural aspects of the mechanism of how these proteins assemble into pores remain unknown. Streptococcus pneumoniae is the world's leading cause of pneumonia, meningitis, bacteremia and otitis media. Pneumolysin (PLY) is a major virulence factor of S. pneumoniae and a target for both small molecule drug development and vaccines. PLY is a member of the cholesterol-dependent cytolysins (CDCs), a family of pore-forming toxins that form gigantic pores in cell membranes. Here we present the structure of PLY determined by X-ray crystallography and, in solution, by small-angle X-ray scattering. The crystal structure reveals PLY assembles as a linear oligomer that provides key structural insights into the poorly understood early monomer-monomer interactions of CDCs at the membrane surface.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Estreptolisinas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Carbohidratos/química , Cristalografía por Rayos X , Manosa/metabolismo , Simulación del Acoplamiento Molecular , Mutación , Unión Proteica , Multimerización de Proteína , Soluciones , Estreptolisinas/genética , Estreptolisinas/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA