Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Neurosci ; 44(15)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38413230

RESUMEN

Adult-born granule cells (abGCs) exhibit a transient period of elevated synaptic plasticity that plays an important role in hippocampal function. Various mechanisms have been implicated in this critical period for enhanced plasticity, including minimal GABAergic inhibition and high intrinsic excitability conferred by T-type Ca2+ channels. Here we assess the contribution of synaptic inhibition and intrinsic excitability to long-term potentiation (LTP) in abGCs of adult male and female mice using perforated patch recordings. We show that the timing of critical period plasticity is unaffected by intact GABAergic inhibition such that 4-6-week-old abGCs exhibit LTP that is absent by 8 weeks. Blocking GABAA receptors, or partial blockade of GABA release from PV and nNos-expressing interneurons by a µ-opioid receptor agonist, strongly enhances LTP in 4-week-old GCs, suggesting that minimal inhibition does not underlie critical period plasticity. Instead, the closure of the critical period coincides with a reduction in the contribution of T-type Ca2+ channels to intrinsic excitability, and a selective T-type Ca2+ channel antagonist prevents LTP in 4-week-old but not mature GCs. Interestingly, whole-cell recordings that facilitate T-type Ca2+ channel activity in mature GCs unmasks LTP (with inhibition intact) that is also sensitive to a T-type Ca2+ channel antagonist, suggesting T-type channel activity in mature GCs is suppressed by native intracellular signaling. Together these results show that abGCs use T-type Ca2+ channels to overcome inhibition, providing new insight into how high intrinsic excitability provides young abGCs a competitive advantage for experience-dependent synaptic plasticity.


Asunto(s)
Potenciación a Largo Plazo , Neuronas , Ratones , Animales , Masculino , Femenino , Neuronas/fisiología , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Hipocampo/fisiología , Ácido gamma-Aminobutírico/farmacología
2.
J Neurosci ; 41(39): 8126-8133, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34400517

RESUMEN

Neurotransmitter spillover is a form of communication not readily predicted by anatomic structure. In the cerebellum, glutamate spillover from climbing fibers recruits molecular layer interneurons in the absence of conventional synaptic connections. Spillover-mediated signaling is typically limited by transporters that bind and reuptake glutamate. Here, we show that patterned expression of the excitatory amino acid transporter 4 (EAAT4) in Purkinje cells regulates glutamate spillover to molecular layer interneurons. Using male and female Aldolase C-Venus knock-in mice to visualize zebrin microzones, we find larger climbing fiber-evoked spillover EPSCs in regions with low levels of EAAT4 compared with regions with high EAAT4. This difference is not explained by presynaptic glutamate release properties or postsynaptic receptor density but rather by differences in the glutamate concentration reaching receptors on interneurons. Inhibiting glutamate transport normalizes the differences between microzones, suggesting that heterogeneity in EAAT4 expression is a primary determinant of differential spillover. These results show that neuronal glutamate transporters limit extrasynaptic transmission in a non-cell-autonomous manner and provide new insight into the functional specialization of cerebellar microzones.SIGNIFICANCE STATEMENT Excitatory amino acid transporters (EAATs) help maintain the fidelity and independence of point-to-point synaptic transmission. Whereas glial transporters are critical to maintain low ambient levels of extracellular glutamate to prevent excitotoxicity, neuronal transporters have more subtle roles in shaping excitatory synaptic transmission. Here we show that the patterned expression of neuronal EAAT4 in cerebellar microzones controls glutamate spillover from cerebellar climbing fibers to nearby interneurons. These results contribute to fundamental understanding of neuronal transporter functions and specialization of cerebellar microzones.


Asunto(s)
Cerebelo/metabolismo , Transportador 4 de Aminoácidos Excitadores/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Ácido Glutámico/metabolismo , Interneuronas/metabolismo , Transmisión Sináptica/fisiología , Animales , Transportador 4 de Aminoácidos Excitadores/genética , Ratones , Células de Purkinje/metabolismo , Sinapsis/metabolismo
3.
J Neurosci ; 38(29): 6513-6526, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29915136

RESUMEN

Sparse neural activity in the dentate gyrus is enforced by powerful networks of inhibitory GABAergic interneurons in combination with low intrinsic excitability of the principal neurons, the dentate granule cells (GCs). Although the cellular and circuit properties that dictate synaptic inhibition are well studied, less is known about mechanisms that confer low GC intrinsic excitability. Here we demonstrate that intact G protein-mediated signaling contributes to the characteristic low resting membrane potential that differentiates mature dentate GCs from CA1 pyramidal cells and developing adult-born GCs. In mature GCs from male and female mice, intact G protein signaling robustly reduces intrinsic excitability, whereas deletion of G protein-activated inwardly rectifying potassium channel 2 (GIRK2) increases excitability and blocks the effects of G protein signaling on intrinsic properties. Similarly, pharmacological manipulation of GABAB receptors (GABABRs) or GIRK channels alters intrinsic excitability and GC spiking behavior. However, adult-born new GCs lack functional GIRK activity, with phasic and constitutive GABABR-mediated GIRK signaling appearing after several weeks of maturation. Phasic activation is interneuron specific, arising primarily from nNOS-expressing interneurons rather than parvalbumin- or somatostatin-expressing interneurons. Together, these results demonstrate that G protein signaling contributes to the intrinsic excitability that differentiates mature and developing dentate GCs and further suggest that late maturation of GIRK channel activity is poised to convert early developmental functions of GABAB receptor signaling into GABABR-mediated inhibition.SIGNIFICANCE STATEMENT The dentate gyrus exhibits sparse neural activity that is essential for the computational function of pattern separation. Sparse activity is ascribed to strong local inhibitory circuits in combination with low intrinsic excitability of the principal neurons, the granule cells. Here we show that constitutive activity of G protein-coupled inwardly rectifying potassium channels (GIRKs) underlies to the hallmark low resting membrane potential and input resistance of mature dentate neurons. Adult-born neurons initially lack functional GIRK channels, with constitutive and phasic GABAB receptor-mediated GIRK inhibition developing in tandem after several weeks of maturation. Our results reveal that GABAB/GIRK activity is an important determinant of low excitability of mature dentate granule cells that may contribute to sparse DG activity in vivo.


Asunto(s)
Giro Dentado/citología , Giro Dentado/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Neuronas/citología , Neuronas/metabolismo , Animales , Diferenciación Celular/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
4.
J Neurosci ; 34(6): 2349-54, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24501373

RESUMEN

Adult-generated granule cells (GCs) in the dentate gyrus must establish synapses with preexisting neurons to participate in network activity. To determine the source of early glutamatergic synapses on newborn GCs in adult mice, we examined synaptic currents at the developmental stage when NMDA receptor-mediated silent synapses are first established. We show that hilar mossy cells provide initial glutamatergic synapses as well as disynaptic GABAergic input to adult-generated dentate GCs.


Asunto(s)
Ácido Glutámico/fisiología , Fibras Musgosas del Hipocampo/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Factores de Edad , Animales , Giro Dentado/citología , Giro Dentado/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos
5.
J Neurosci ; 33(49): 19131-42, 2013 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-24305810

RESUMEN

Adult neurogenesis continually produces a small population of immature granule cells (GCs) within the dentate gyrus. The physiological properties of immature GCs distinguish them from the more numerous mature GCs and potentially enables distinct network functions. To test how the changing properties of developing GCs affect spiking behavior, we examined synaptic responses of mature and immature GCs in hippocampal slices from adult mice. Whereas synaptic inhibition restricted GC spiking at most stages of maturation, the relative influence of inhibition, excitatory synaptic drive, and intrinsic excitability shifted over the course of maturation. Mature GCs received profuse afferent innervation such that spiking was suppressed primarily by inhibition, whereas immature GC spiking was also limited by the strength of excitatory drive. Although the input resistance was a reliable indicator of maturation, it did not determine spiking probability at immature stages. Our results confirm the existence of a transient period during GC maturation when perforant path stimulation can generate a high probability of spiking, but also reveal that immature GC excitability is tempered by functional synaptic inhibition and reduced excitatory innervation, likely maintaining the sparse population activity observed in vivo.


Asunto(s)
Giro Dentado/citología , Giro Dentado/crecimiento & desarrollo , Neurogénesis/fisiología , Animales , Giro Dentado/fisiología , Estimulación Eléctrica , Fenómenos Electrofisiológicos/efectos de los fármacos , Fenómenos Electrofisiológicos/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Ratones Transgénicos , Microscopía Confocal , Nestina/metabolismo , Técnicas de Placa-Clamp , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/metabolismo , Sinapsis/fisiología
6.
J Neurosci ; 33(15): 6614-22, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23575858

RESUMEN

Neural activity enhances adult neurogenesis, enabling experience to influence the construction of new circuits. GABAA receptor-mediated depolarization of newborn neurons in the adult and developing brain promotes glutamatergic synaptic integration since chronic reduction of GABA depolarization impairs morphological maturation and formation of glutamatergic synapses. Here we demonstrate an acute role of GABA depolarization in glutamatergic synaptic integration. Using proopiomelanocortin enhanced-green fluorescent protein reporter mice, we identify a developmental stage when adult-generated neurons have glutamatergic synaptic transmission mediated solely by NMDA receptors (NMDARs), representing the initial silent synapses before AMPA receptor (AMPAR)-mediated functional transmission. We show that pairing synaptic stimulation with postsynaptic depolarization results in synapse unsilencing that requires NMDAR activation. GABA synaptic depolarization enables activation of NMDARs in the absence of AMPAR-mediated transmission and is required for synapse unsilencing induced by synaptic activity in vitro as well as a brief exposure to an enriched environment in vivo. The rapid appearance of AMPAR-mediated EPSCs and the lack of maturational changes show that GABA depolarization acutely allows NMDAR activation required for initial synapse unsilencing. Together, these results also reveal that adult-generated neurons in a critical period for survival use GABA signaling to rapidly initiate functional glutamate-mediated transmission in response to experience.


Asunto(s)
Receptores AMPA/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Período Crítico Psicológico , Ambiente , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Hipocampo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/fisiología , Neuronas/fisiología , Proopiomelanocortina/genética , Transmisión Sináptica/fisiología
7.
Cerebellum ; 13(4): 513-20, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24590660

RESUMEN

The diversity of synapses within the simple modular structure of the cerebellum has been crucial for study of the phasic extrasynaptic signaling by fast neurotransmitters collectively referred to as "spillover." Additionally, the accessibility of cerebellar components for in vivo recordings and their recruitment by simple behaviors or sensory stimuli has allowed for both direct and indirect demonstrations of the effects of transmitter spillover in the intact brain. The continued study of spillover in the cerebellum not only promotes our understanding of information transfer through cerebellar structures but also how extrasynaptic signaling may be regulated and interpreted throughout the CNS.


Asunto(s)
Cerebelo/citología , Cerebelo/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Humanos , Fibras Nerviosas/fisiología , Neurotransmisores/metabolismo
8.
J Neurosci ; 32(5): 1528-35, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22302796

RESUMEN

In the CNS, excitatory amino acid transporters (EAATs) localized to neurons and glia terminate the actions of synaptically released glutamate. Whereas glial transporters are primarily responsible for maintaining low ambient levels of extracellular glutamate, neuronal transporters have additional roles in shaping excitatory synaptic transmission. Here we test the hypothesis that the expression level of the Purkinje cell (PC)-specific transporter, EAAT4, near parallel fiber (PF) release sites controls the extrasynaptic glutamate concentration transient following synaptic stimulation. Expression of EAAT4 follows a parasagittal banding pattern that allows us to compare regions of high and low EAAT4-expressing PCs. Using EAAT4 promoter-driven eGFP reporter mice together with pharmacology and genetic deletion, we show that the level of neuronal transporter expression influences extrasynaptic transmission from PFs to adjacent Bergmann glia (BG). Surprisingly, a twofold difference in functional EAAT4 levels is sufficient to alter signaling to BG, although EAAT4 may only be responsible for removing a fraction of released glutamate. These results demonstrate that physiological regulation of neuronal transporter expression can alter extrasynaptic neuroglial signaling.


Asunto(s)
Transportador 4 de Aminoácidos Excitadores/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Sistema de Transporte de Aminoácidos X-AG/fisiología , Animales , Animales Recién Nacidos , Cerebelo/efectos de los fármacos , Cerebelo/fisiología , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Femenino , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Transducción de Señal/fisiología , Transmisión Sináptica/efectos de los fármacos
9.
Nat Commun ; 14(1): 3113, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253743

RESUMEN

Precise alignment of pre- and postsynaptic elements optimizes the activation of glutamate receptors at excitatory synapses. Nonetheless, glutamate that diffuses out of the synaptic cleft can have actions at distant receptors, a mode of transmission called spillover. To uncover the extrasynaptic actions of glutamate, we localized AMPA receptors (AMPARs) mediating spillover transmission between climbing fibers and molecular layer interneurons in the cerebellar cortex. We found that climbing fiber spillover generates calcium transients mediated by Ca2+-permeable AMPARs at parallel fiber synapses. Spillover occludes parallel fiber synaptic currents, indicating that separate, independently regulated afferent pathways converge onto a common pool of AMPARs. Together these findings demonstrate a circuit motif wherein glutamate 'spill-in' from an unconnected afferent pathway co-opts synaptic receptors, allowing activation of postsynaptic AMPARs even when canonical glutamate release is suppressed.


Asunto(s)
Receptores AMPA , Transmisión Sináptica , Transmisión Sináptica/fisiología , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Interneuronas/metabolismo , Ácido Glutámico/metabolismo , Calcio/metabolismo
10.
Cell Rep ; 42(2): 112039, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36749664

RESUMEN

The central circadian regulator within the suprachiasmatic nucleus transmits time of day information by a diurnal spiking rhythm driven by molecular clock genes controlling membrane excitability. Most brain regions, including the hippocampus, harbor similar intrinsic circadian transcriptional machinery, but whether these molecular programs generate oscillations of membrane properties is unclear. Here, we show that intrinsic excitability of mouse dentate granule neurons exhibits a 24-h oscillation that controls spiking probability. Diurnal changes in excitability are mediated by antiphase G-protein regulation of potassium and sodium currents that reduce excitability during the Light phase. Disruption of the circadian transcriptional machinery by conditional deletion of Bmal1 enhances excitability selectively during the Light phase by removing G-protein regulation. These results reveal that circadian transcriptional machinery regulates intrinsic excitability by coordinated regulation of ion channels by G-protein signaling, highlighting a potential novel mechanism of cell-autonomous oscillations.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Ratones , Animales , Ritmo Circadiano/fisiología , Neuronas/fisiología , Núcleo Supraquiasmático/fisiología , Proteínas de Unión al GTP , Giro Dentado , Relojes Circadianos/fisiología
11.
Nat Rev Neurosci ; 8(12): 935-47, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17987031

RESUMEN

Traditionally, glutamate transporters have been viewed as membrane proteins that harness the electrochemical gradient to slowly transport glutamate from the extracellular space into glial cells. However, recent studies have shown that glutamate transporters on glial and neuronal membranes also rapidly bind released glutamate to shape synaptic transmission. In this Review, we summarize the properties of glutamate transporters that influence synaptic transmission and are subject to regulation and plasticity. We highlight how the diversity of glutamate-transporter function relates to transporter location, density and affinity.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/fisiología , Transmisión Sináptica/fisiología , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Ácido Glutámico/fisiología , Humanos , Plasticidad Neuronal/fisiología
12.
J Neurosci ; 29(48): 15063-72, 2009 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-19955357

RESUMEN

Adult neurogenesis is the multistage process of generating neurons from adult neural stem cells. Accumulating evidence indicates that GABAergic depolarization is an important regulator of this process. Here, we examined GABAergic signaling to newly generated granule cells (GCs) of the adult mouse dentate gyrus. We show that the first synaptic currents in newborn GCs are generated by activation of GABA(A) receptors by GABA with a spatiotemporal profile suggestive of transmitter spillover. However, the GABAergic response is not attributable to spillover from surrounding perisomatic synapses. Rather, our results suggest that slow synaptic responses in newborn GCs are generated by dedicated inputs that produce a relatively low concentration of GABA at postsynaptic receptors, similar to slow IPSCs in mature GCs. This form of synaptic signaling drives robust phasic depolarization of newborn GCs when the interneuron network is synchronously active, revealing a potential mechanism that translates hippocampal activity into regulation of adult neurogenesis via synaptic release of GABA.


Asunto(s)
Células Madre Adultas/fisiología , Giro Dentado/citología , Neuronas/fisiología , Transducción de Señal/fisiología , Ácido gamma-Aminobutírico/metabolismo , 4-Aminopiridina/farmacología , Análisis de Varianza , Animales , Biofisica , Calcio/metabolismo , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA/farmacología , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Bloqueadores de los Canales de Potasio/farmacología , Proopiomelanocortina/genética , Regiones Promotoras Genéticas/genética , Transducción de Señal/genética , Estadísticas no Paramétricas
13.
Elife ; 92020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32602839

RESUMEN

Parvalbumin-expressing interneurons (PVs) in the dentate gyrus provide activity-dependent regulation of adult neurogenesis as well as maintain inhibitory control of mature neurons. In mature neurons, PVs evoke GABAA postsynaptic currents (GPSCs) with fast rise and decay phases that allow precise control of spike timing, yet synaptic currents with fast kinetics do not appear in adult-born neurons until several weeks after cell birth. Here we used mouse hippocampal slices to address how PVs signal to newborn neurons prior to the appearance of fast GPSCs. Whereas PV-evoked currents in mature neurons exhibit hallmark fast rise and decay phases, newborn neurons display slow GPSCs with characteristics of spillover signaling. We also unmasked slow spillover currents in mature neurons in the absence of fast GPSCs. Our results suggest that PVs mediate slow spillover signaling in addition to conventional fast synaptic signaling, and that spillover transmission mediates activity-dependent regulation of early events in adult neurogenesis.


Asunto(s)
Giro Dentado/fisiología , Interneuronas/metabolismo , Inhibición Neural/fisiología , Parvalbúminas/metabolismo , Animales , Giro Dentado/crecimiento & desarrollo , Ratones , Ratones Transgénicos , Neurogénesis , Transducción de Señal/fisiología
14.
Nat Neurosci ; 8(10): 1329-34, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16136036

RESUMEN

Glutamate transporters are responsible for clearing synaptically released glutamate from the extracellular space. If expressed at high enough densities, transporters can prevent activation of extrasynaptic receptors by rapidly lowering glutamate concentrations to insignificant levels. We find that synaptic activation of metabotropic glutamate receptors expressed by Purkinje cells is prevented in regions of rat cerebellum where the density of the glutamate transporter EAAT4 is high. The consequences of metabotropic receptor stimulation, including activation of a depolarizing conductance, cannabinoid-mediated presynaptic inhibition and long-term depression, are also limited in Purkinje cells expressing high levels of EAAT4. We conclude that neuronal uptake sites must be overwhelmed by glutamate to activate perisynaptic metabotropic glutamate receptors. Regional differences in glutamate transporter expression affect the degree of metabotropic glutamate receptor activation and therefore regulate synaptic plasticity.


Asunto(s)
Cerebelo/citología , Transportador 4 de Aminoácidos Excitadores/metabolismo , Regulación de la Expresión Génica/fisiología , Plasticidad Neuronal/fisiología , Células de Purkinje/fisiología , Sinapsis/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Ácido Aspártico/farmacología , Calcio/farmacología , Cannabinoides/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/metabolismo , Técnicas In Vitro , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Técnicas de Placa-Clamp/métodos , Quinoxalinas/farmacología , Ratas , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
15.
Elife ; 82019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31364987

RESUMEN

The number of neurotransmitter-filled vesicles released into the synaptic cleft with each action potential dictates the reliability of synaptic transmission. Variability of this fundamental property provides diversity of synaptic function across brain regions, but the source of this variability is unclear. The prevailing view is that release of a single (univesicular release, UVR) or multiple vesicles (multivesicular release, MVR) reflects variability in vesicle release probability, a notion that is well-supported by the calcium-dependence of release mode. However, using mouse brain slices, we now demonstrate that the number of vesicles released is regulated by the size of the readily-releasable pool, upstream of vesicle release probability. Our results point to a model wherein protein kinase A and its vesicle-associated target, synapsin, dynamically control release site occupancy to dictate the number of vesicles released without altering release probability. Together these findings define molecular mechanisms that control MVR and functional diversity of synaptic signaling.


Asunto(s)
Transmisión Sináptica , Vesículas Sinápticas/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ratones , Modelos Biológicos , Sinapsinas/metabolismo
16.
Sci Rep ; 9(1): 1448, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30723302

RESUMEN

The cerebellar cortex is involved in the control of diverse motor and non-motor functions. Its principal circuit elements are the Purkinje cells that integrate incoming excitatory and local inhibitory inputs and provide the sole output of the cerebellar cortex. However, the transcriptional control of circuit assembly in the cerebellar cortex is not well understood. Here, we show that NeuroD2, a neuronal basic helix-loop-helix (bHLH) transcription factor, promotes the postnatal survival of both granule cells and molecular layer interneurons (basket and stellate cells). However, while NeuroD2 is not essential for the integration of surviving granule cells into the excitatory circuit, it is required for the terminal differentiation of basket cells. Axons of surviving NeuroD2-deficient basket cells follow irregular trajectories and their inhibitory terminals are virtually absent from Purkinje cells in Neurod2 mutants. As a result inhibitory, but not excitatory, input to Purkinje cells is strongly reduced in the absence of NeuroD2. Together, we conclude that NeuroD2 is necessary to instruct a terminal differentiation program in basket cells that regulates targeted axon growth and inhibitory synapse formation. An imbalance of excitation and inhibition in the cerebellar cortex affecting Purkinje cell output may underlay impaired adaptive motor learning observed in Neurod2 mutants.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neurogénesis , Neuropéptidos/metabolismo , Células de Purkinje/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Potenciales Postsinápticos Excitadores , Potenciales Postsinápticos Inhibidores , Interneuronas/citología , Interneuronas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuropéptidos/genética , Células de Purkinje/citología
17.
Elife ; 62017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-29028183

RESUMEN

Golgi cells are the principal inhibitory neurons at the input stage of the cerebellum, providing feedforward and feedback inhibition through mossy fiber and parallel fiber synapses. In vivo studies have shown that Golgi cell activity is regulated by climbing fiber stimulation, yet there is little functional or anatomical evidence for synapses between climbing fibers and Golgi cells. Here, we show that glutamate released from climbing fibers activates ionotropic and metabotropic receptors on Golgi cells through spillover-mediated transmission. The interplay of excitatory and inhibitory conductances provides flexible control over Golgi cell spiking, allowing either excitation or a biphasic sequence of excitation and inhibition following single climbing fiber stimulation. Together with prior studies of spillover transmission to molecular layer interneurons, these results reveal that climbing fibers exert control over inhibition at both the input and output layers of the cerebellar cortex.


Asunto(s)
Cerebelo/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Potenciales de Acción , Animales , Ácido Glutámico/metabolismo , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo
18.
Elife ; 62017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28135190

RESUMEN

Adult-born neurons are continually produced in the dentate gyrus but it is unclear whether synaptic integration of new neurons affects the pre-existing circuit. Here we investigated how manipulating neurogenesis in adult mice alters excitatory synaptic transmission to mature dentate neurons. Enhancing neurogenesis by conditional deletion of the pro-apoptotic gene Bax in stem cells reduced excitatory postsynaptic currents (EPSCs) and spine density in mature neurons, whereas genetic ablation of neurogenesis increased EPSCs in mature neurons. Unexpectedly, we found that Bax deletion in developing and mature dentate neurons increased EPSCs and prevented neurogenesis-induced synaptic suppression. Together these results show that neurogenesis modifies synaptic transmission to mature neurons in a manner consistent with a redistribution of pre-existing synapses to newly integrating neurons and that a non-apoptotic function of the Bax signaling pathway contributes to ongoing synaptic refinement within the dentate circuit.


Neurogenesis, the creation of new brain cells called neurons, occurs primarily before birth. However, a region of the brain called the dentate gyrus, which is involved in memory, continues to produce new neurons throughout life. Recent studies suggest that adding neurons to the dentate gyrus helps the brain to distinguish between similar sights, sounds and smells. This in turn makes it easier to encode similar experiences as distinct memories. The brain's outer layer, called the cortex, processes information from our senses and sends it, along with information about our location in space, to the dentate gyrus. By combining this sensory and spatial information, the dentate gyrus is able to generate a unique memory of an experience. But how does neurogenesis affect this process? As the dentate gyrus accumulates more neurons, the number of neurons in the cortex remains unchanged. Do some cortical neurons transfer their connections ­ called synapses ­ to the new neurons? Or does the brain generate additional synapses to accommodate the newborn cells? Adlaf et al. set out to answer this question by genetically modifying mice to alter the number of new neurons that could form in the dentate gyrus. Increasing the number of newborn neurons reduced the number of synapses between the cortex and the mature neurons in the dentate gyrus. Conversely, killing off newborn neurons had the opposite effect, increasing the strength of the synaptic connections to older cells. This suggests that new synapses are not formed to accommodate new neurons, but rather that there is a redistribution of synapses between old and new neurons in the dentate gyrus. Further work is required to determine how this redistribution of synapses contributes to how the dentate gyrus works. Does redistributing synapses disrupt existing memories? And how do these findings relate to the effects of exercise ­ does this natural way of increasing neurogenesis increase the overall number of synapses in the system, potentially creating enough connections for both new and old neurons?


Asunto(s)
Giro Dentado/fisiología , Potenciales Postsinápticos Excitadores , Red Nerviosa/fisiología , Neurogénesis , Neuronas/fisiología , Transmisión Sináptica , Animales , Ratones
20.
Nat Commun ; 7: 11313, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27095423

RESUMEN

Persistent neurogenesis in the dentate gyrus produces immature neurons with high intrinsic excitability and low levels of inhibition that are predicted to be more broadly responsive to afferent activity than mature neurons. Mounting evidence suggests that these immature neurons are necessary for generating distinct neural representations of similar contexts, but it is unclear how broadly responsive neurons help distinguish between similar patterns of afferent activity. Here we show that stimulation of the entorhinal cortex in mouse brain slices paradoxically generates spiking of mature neurons in the absence of immature neuron spiking. Immature neurons with high intrinsic excitability fail to spike due to insufficient excitatory drive that results from low innervation rather than silent synapses or low release probability. Our results suggest that low synaptic connectivity prevents immature neurons from responding broadly to cortical activity, potentially enabling excitable immature neurons to contribute to sparse and orthogonal dentate representations.


Asunto(s)
Giro Dentado/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Inhibición Neural/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Giro Dentado/citología , Giro Dentado/efectos de los fármacos , Estimulación Eléctrica , Corteza Entorrinal/citología , Corteza Entorrinal/efectos de los fármacos , Corteza Entorrinal/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Expresión Génica , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones , Ratones Transgénicos , Microtomía , N-Metilaspartato/farmacología , Nestina/genética , Nestina/metabolismo , Inhibición Neural/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/fisiología , Neurogénesis/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Piridazinas/farmacología , Sinapsis/efectos de los fármacos , Tamoxifeno/farmacología , Técnicas de Cultivo de Tejidos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA