Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
J Am Chem Soc ; 146(3): 2219-2226, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38207218

RESUMEN

Marine organisms produce biological materials through the complex self-assembly of protein condensates in seawater, but our understanding of the mechanisms of microstructure evolution and maturation remains incomplete. Here, we show that critical processing attributes of mussel holdfast proteins can be captured by the design of an amphiphilic, fluorescent polymer (PECHIA) consisting of a polyepichlorohydrin backbone grafted with 1-imidazolium acetonitrile. Aqueous solutions of PECHIA were extruded into seawater, wherein the charge repulsion of PECHIA is screened by high salinity, facilitating interfacial condensation via enhanced "cation-dipole" interactions. Diffusion of seawater into the PECHIA solution caused droplets to form immiscibly within the PECHIA phase (i.e., inverse coacervation). Simultaneously, weakly alkaline seawater catalyzes nitrile cyclization and time-dependent solidification of the PECHIA phase, leading to hierarchically porous membranes analogous to porous architectures in mussel plaques. In contrast to conventional polymer processing technologies, processing of this biomimetic polymer required neither organic solvents nor heating and enabled the template-free production of hollow spheres and fibers over a wide range of salinities.


Asunto(s)
Bivalvos , Proteínas , Animales , Proteínas/química , Agua de Mar , Agua , Bivalvos/química , Polímeros
2.
Biomacromolecules ; 24(7): 3032-3042, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37294315

RESUMEN

Whether and how intramolecular crosslinks in polymeric materials contribute to mechanical properties is debated in both experimental and theoretical arenas. The tethering threads of Octopus bimaculoides egg cases provide a rare window to investigate this question in a biomaterial. The only detectable component of the load-bearing fibers in octopus threads is a 135 kDa protein, octovafibrin, comprising 29 tandem repeats of epidermal growth factor (EGF) each of which contains 3 intramolecular disulfide linkages. The N- and C-terminal C-type lectins mediate linear end-to-end octovafibrin self-assembly. Mechanical testing of threads shows that the regularly spaced disulfide linkages result in improved stiffness, toughness, and energy dissipation. In response to applied loads, molecular dynamics and X-ray scattering show that EGF-like domains deform by recruiting two hidden length ß-sheet structures nested between the disulfides. The results of this study further the understanding of intramolecular crosslinking in polymers and provide a foundation for the mechanical contributions of EGF domains to the extracellular matrix.


Asunto(s)
Factor de Crecimiento Epidérmico , Octopodiformes , Animales , Factor de Crecimiento Epidérmico/química , Secuencia de Aminoácidos , Matriz Extracelular/metabolismo , Disulfuros/química
3.
Biomacromolecules ; 24(9): 4190-4198, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37603820

RESUMEN

Polyelectrolyte coacervates, with their greater-than-water density, low interfacial energy, shear thinning viscosity, and ability to undergo structural arrest, mediate the formation of diverse load-bearing macromolecular materials in living organisms as well as in industrial material fabrication. Coacervates, however, have other useful attributes that are challenging to study given the metastability of coacervate colloidal droplets and a lack of suitable analytical methods. We adopt solution electrochemistry and nuclear magnetic resonance measurements to obtain remarkable insights about coacervates as solvent media for low-molecular-weight catechols. When catechols are added to dispersions of coacervated polyelectrolytes, there are two significant consequences: (1) catechols preferentially partition up to 260-fold into the coacervate phase, and (2) coacervates stabilize catechol redox potentials by up to +200 mV relative to the equilibrium solution. The results suggest that the relationship between phase-separated polyelectrolytes and their client molecules is distinct from that existing in aqueous solution and has the potential for insulating many redox-unstable chemicals.


Asunto(s)
Catecoles , Programas Informáticos , Humanos , Polielectrolitos , Solubilidad , Peso Molecular , Agua
4.
Biomacromolecules ; 23(7): 2878-2890, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35748755

RESUMEN

Nanoscopic structural control with long-range ordering remains a profound challenge in nanomaterial fabrication. The nanoarchitectured egg cases of elasmobranchs rely on a hierarchically ordered latticework for their protective function─serving as an exemplary system for nanoscale self-assembly. Although the proteinaceous precursors are known to undergo intermediate liquid crystalline phase transitions before being structurally arrested in the final nanolattice architecture, their sequences have so far remained unknown. By leveraging RNA-seq and proteomic techniques, we identified a cohort of nanolattice-forming proteins comprising a collagenous midblock flanked by domains typically associated with innate immunity and network-forming collagens. Structurally homologous proteins were found in the genomes of other egg-case-producing cartilaginous fishes, suggesting a conserved molecular self-assembly strategy. The identity and stabilizing role of cross-links were subsequently elucidated using mass spectrometry and in situ small-angle X-ray scattering. Our findings provide a new design approach for protein-based liquid crystalline elastomers and the self-assembly of nanolattices.


Asunto(s)
Cristales Líquidos , Tiburones , Animales , Colágeno , Humanos , Cristales Líquidos/química , Transición de Fase , Proteómica
5.
Nano Lett ; 21(19): 8080-8085, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34585939

RESUMEN

Structural versatility and multifunctionality of biological materials have resulted in countless bioinspired strategies seeking to emulate the properties of nature. The nanostructured egg case of swell sharks is one of the toughest permeable membranes known and, thus, presents itself as a model system for materials where the conflicting properties, strength and porosity, are desirable. The egg case possesses an intricately ordered structure that is designed to protect delicate embryos from the external environment while enabling respiratory and metabolic exchange, achieving a tactical balance between conflicting properties. Herein, structural analyses revealed an enabling nanolattice architecture that constitutes a Bouligand-like nanoribbon hierarchical assembly. Three distinct hierarchical architectural adaptations enhance egg case survival: Bouligand-like organization for in-plane isotropic reinforcement, noncylindrical nanoribbons maximizing interfacial stress distribution, and highly ordered nanolattices enabling permeability and lattice-governed toughening mechanisms. These discoveries provide fundamental insights for the improvement of multifunctional membranes, fiber-reinforced soft composites, and mechanical metamaterials.


Asunto(s)
Nanoestructuras , Tiburones , Animales , Permeabilidad , Porosidad
6.
Langmuir ; 35(48): 15985-15991, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31405280

RESUMEN

The mussel byssus thread is an extremely tough core-shelled fiber that dissipates substantial amounts of energy during tensile loading. The mechanical performance of the shell is critically reliant on 3,4-dihydroxyphenylalanine's (Dopa) ability to form reversible iron-catecholate complexes at pH 8. However, the formation of these coordinate cross-links is undercut by Dopa's oxidation to Dopa-quinone, a spontaneous process at seawater conditions. The large mechanical mismatch between the cuticle and the core lends itself to further complications. Despite these challenges, the mussel byssus thread performs its tethering function over long periods of time. Here, we address these two major questions: (1) how does the mussel slow/prevent oxidation in the cuticle, and (2) how is the mechanical mismatch at the core/shell interface mitigated? By combining a number of microscopy and spectroscopy techniques we have discerned a previously undescribed layer. Our results indicate this interlayer is thiol rich and thus will be called the thiol-rich interlayer (TRL). We propose the TRL serves as a long-lasting redox reservoir as well as a mechanical barrier.

7.
Proc Natl Acad Sci U S A ; 113(16): 4332-7, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27036002

RESUMEN

Translating sticky biological molecules-such as mussel foot proteins (MFPs)-into synthetic, cost-effective underwater adhesives with adjustable nano- and macroscale characteristics requires an intimate understanding of the glue's molecular interactions. To help facilitate the next generation of aqueous adhesives, we performed a combination of surface forces apparatus (SFA) measurements and replica-exchange molecular dynamics (REMD) simulations on a synthetic, easy to prepare, Dopa-containing peptide (MFP-3s peptide), which adheres to organic surfaces just as effectively as its wild-type protein analog. Experiments and simulations both show significant differences in peptide adsorption on CH3-terminated (hydrophobic) and OH-terminated (hydrophilic) self-assembled monolayers (SAMs), where adsorption is strongest on hydrophobic SAMs because of orientationally specific interactions with Dopa. Additional umbrella-sampling simulations yield free-energy profiles that quantitatively agree with SFA measurements and are used to extract the adhesive properties of individual amino acids within the context of MFP-3s peptide adhesion, revealing a delicate balance between van der Waals, hydrophobic, and electrostatic forces.


Asunto(s)
Adhesivos/química , Bivalvos/química , Modelos Químicos , Péptidos/química , Animales , Humectabilidad
8.
Nat Mater ; 15(4): 407-412, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26779881

RESUMEN

Polyelectrolyte complexation is critical to the formation and properties of many biological and polymeric materials, and is typically initiated by aqueous mixing followed by fluid-fluid phase separation, such as coacervation. Yet little to nothing is known about how coacervates evolve into intricate solid microarchitectures. Inspired by the chemical features of the cement proteins of the sandcastle worm, here we report a versatile and strong wet-contact microporous adhesive resulting from polyelectrolyte complexation triggered by solvent exchange. After premixing a catechol-functionalized weak polyanion with a polycation in dimethyl sulphoxide (DMSO), the solution was applied underwater to various substrates whereupon electrostatic complexation, phase inversion, and rapid setting were simultaneously actuated by water-DMSO solvent exchange. Spatial and temporal coordination of complexation, inversion and setting fostered rapid (∼25 s) and robust underwater contact adhesion (Wad ≥ 2 J m(-2)) of complexed catecholic polyelectrolytes to all tested surfaces including plastics, glasses, metals and biological materials.


Asunto(s)
Adhesivos/química , Poliquetos/química , Agua/química , Animales , Dimetilsulfóxido/química , Poliaminas/química , Poliaminas/metabolismo , Poliquetos/metabolismo , Polielectrolitos , Polímeros/química , Polímeros/metabolismo
9.
Nat Chem Biol ; 11(7): 488-95, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26053298

RESUMEN

The beak of the jumbo squid Dosidicus gigas is a fascinating example of how seamlessly nature builds with mechanically mismatched materials. A 200-fold stiffness gradient begins in the hydrated chitin of the soft beak base and gradually increases to maximum stiffness in the dehydrated distal rostrum. Here, we combined RNA-Seq and proteomics to show that the beak contains two protein families. One family consists of chitin-binding proteins (DgCBPs) that physically join chitin chains, whereas the other family comprises highly modular histidine-rich proteins (DgHBPs). We propose that DgHBPs play multiple key roles during beak bioprocessing, first by forming concentrated coacervate solutions that diffuse into the DgCBP-chitin scaffold, and second by inducing crosslinking via an abundant GHG sequence motif. These processes generate spatially controlled desolvation, resulting in the impressive biomechanical gradient. Our findings provide novel molecular-scale strategies for designing functional gradient materials.


Asunto(s)
Pico/química , Quitina/química , Decapodiformes/química , Proteínas/química , Agua/química , Secuencia de Aminoácidos , Animales , Pico/metabolismo , Fenómenos Biomecánicos , Catecoles/química , Quitina/metabolismo , Quitina/ultraestructura , Reactivos de Enlaces Cruzados/química , Decapodiformes/metabolismo , Dureza , Datos de Secuencia Molecular , Ácido Peryódico/química , Unión Proteica , Estructura Terciaria de Proteína , Proteínas/metabolismo , Proteínas/ultraestructura , Proteómica , Análisis de Secuencia de ARN
10.
J Exp Biol ; 220(Pt 4): 517-530, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28202646

RESUMEN

Robust adhesion to wet, salt-encrusted, corroded and slimy surfaces has been an essential adaptation in the life histories of sessile marine organisms for hundreds of millions of years, but it remains a major impasse for technology. Mussel adhesion has served as one of many model systems providing a fundamental understanding of what is required for attachment to wet surfaces. Most polymer engineers have focused on the use of 3,4-dihydroxyphenyl-l-alanine (Dopa), a peculiar but abundant catecholic amino acid in mussel adhesive proteins. The premise of this Review is that although Dopa does have the potential for diverse cohesive and adhesive interactions, these will be difficult to achieve in synthetic homologs without a deeper knowledge of mussel biology; that is, how, at different length and time scales, mussels regulate the reactivity of their adhesive proteins. To deposit adhesive proteins onto target surfaces, the mussel foot creates an insulated reaction chamber with extreme reaction conditions such as low pH, low ionic strength and high reducing poise. These conditions enable adhesive proteins to undergo controlled fluid-fluid phase separation, surface adsorption and spreading, microstructure formation and, finally, solidification.


Asunto(s)
Adhesivos/metabolismo , Bivalvos/fisiología , Proteínas/metabolismo , Adhesividad , Adhesivos/análisis , Secuencia de Aminoácidos , Animales , Bivalvos/anatomía & histología , Bivalvos/química , Dihidroxifenilalanina/análisis , Dihidroxifenilalanina/metabolismo , Concentración de Iones de Hidrógeno , Concentración Osmolar , Proteínas/análisis , Resistencia a la Tracción , Humectabilidad
11.
Soft Matter ; 13(40): 7381-7388, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28972234

RESUMEN

The proteinaceous byssal plaque-thread structures created by marine mussels exhibit extraordinary load-bearing capability. Although the nanoscopic protein interactions that support interfacial adhesion are increasingly understood, major mechanistic questions about how mussel plaques maintain toughness on supramolecular scales remain unanswered. This study explores the mechanical properties of whole mussel plaques subjected to repetitive loading cycles, with varied recovery times. Mechanical measurements were complemented with scanning electron microscopy to investigate strain-induced structural changes after yield. Multicyclic loading of plaques decreases their low-strain stiffness and introduces irreversible, strain-dependent plastic damage within the plaque microstructure. However, strain history does not compromise critical strength or maximum extension compared with plaques monotonically loaded to failure. These results suggest that a multiplicity of force transfer mechanisms between the thread and plaque-substrate interface allow the plaque-thread structure to accommodate a wide range of extensions as it continues to bear load. This improved understanding of the mussel system at micron-to-millimeter lengthscales offers strategies for including similar fail-safe mechanisms in the design of soft, tough and resilient synthetic structures.


Asunto(s)
Bivalvos/fisiología , Animales , Fenómenos Biomecánicos , Bivalvos/anatomía & histología , Ensayo de Materiales , Soporte de Peso
12.
Soft Matter ; 13(48): 9122-9131, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29192930

RESUMEN

We report here that a dense liquid formed by spontaneous condensation, also known as simple coacervation, of a single mussel foot protein-3S-mimicking peptide exhibits properties critical for underwater adhesion. A structurally homogeneous coacervate is deposited on underwater surfaces as micrometer-thick layers, and, after compression, displays orders of magnitude higher underwater adhesion at 2 N m-1 than that reported from thin films of the most adhesive mussel-foot-derived peptides or their synthetic mimics. The increase in adhesion efficiency does not require nor rely on post-deposition curing or chemical processing, but rather represents an intrinsic physical property of the single-component coacervate. Its wet adhesive and rheological properties correlate with significant dehydration, tight peptide packing and restriction in peptide mobility. We suggest that such dense coacervate liquids represent an essential adaptation for the initial priming stages of mussel adhesive deposition, and provide a hitherto untapped design principle for synthetic underwater adhesives.

13.
Proc Natl Acad Sci U S A ; 111(17): 6317-22, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24733908

RESUMEN

Sea stars adhere firmly but temporarily to various substrata as a result of underwater efficient adhesive secretions released by their tube feet. Previous studies showed that this material is mainly made up of proteins, which play a key role in its adhesiveness and cohesiveness. Recently, we solubilized the majority of these proteins and obtained 43 de novo-generated peptide sequences by tandem MS. Here, one of these sequences served to recover the full-length sequence of Sea star footprint protein 1 (Sfp1), by RT-PCR and tube foot transcriptome analysis. Sfp1, a large protein of 3,853 aa, is the second most abundant constituent of the secreted adhesive. By using MS and Western blot analyses, we showed that Sfp1 is translated from a single mRNA and then cleaved into four subunits linked together by disulphide bridges in tube foot adhesive cells. The four subunits display specific protein-, carbohydrate-, and metal-binding domains. Immunohistochemistry and immunocytochemistry located Sfp1 in granules stockpiled by one of the two types of adhesive cells responsible for the secretion of the adhesive material. We also demonstrated that Sfp1 makes up the structural scaffold of the adhesive footprint that remains on the substratum after tube foot detachment. Taken together, the results suggest that Sfp1 is a major structural protein involved in footprint cohesion and possibly in adhesive interactions with the tube foot surface. In recombinant form, it could be used for the design of novel sea star-inspired biomaterials.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Estrellas de Mar/metabolismo , Adhesividad , Estructuras Animales/citología , Estructuras Animales/ultraestructura , Animales , Datos de Secuencia Molecular , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Estrellas de Mar/citología , Estrellas de Mar/ultraestructura
14.
Biochemistry ; 55(5): 743-50, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26745013

RESUMEN

Dopa (l-3,4-dihydroxyphenylalanine) is a key chemical signature of mussel adhesive proteins, but its susceptibility to oxidation has limited mechanistic investigations as well as practical translation to wet adhesion technology. To investigate peptidyl-Dopa oxidation, the highly diverse chemical environment of Dopa in mussel adhesive proteins was simplified to a peptidyl-Dopa analogue, N-acetyl-Dopa ethyl ester. On the basis of cyclic voltammetry and UV-vis spectroscopy, the Dopa oxidation product at neutral to alkaline pH was shown to be α,ß-dehydro-Dopa (ΔD), a vinylcatecholic tautomer of Dopa-quinone. ΔD exhibited an adsorption capacity on TiO2 20-fold higher than that of the Dopa homologue in the quartz crystal microbalance. Cyclic voltammetry confirmed the spontaneity of ΔD formation in mussel foot protein 3F at neutral pH that is coupled to a change in protein secondary structure from random coil to ß-sheet. A more complete characterization of ΔD reactivity adds a significant new perspective to mussel adhesive chemistry and the design of synthetic bioinspired adhesives.


Asunto(s)
Bivalvos/fisiología , Dihidroxifenilalanina/análogos & derivados , Animales , Cromatografía Líquida de Alta Presión , Dihidroxifenilalanina/fisiología , Oxidación-Reducción , Polimerizacion , Proteínas/fisiología , Tecnicas de Microbalanza del Cristal de Cuarzo , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier
15.
Biochemistry ; 55(13): 2022-30, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26998552

RESUMEN

Adhesive mussel foot proteins (Mfps) rely in part on DOPA (3,4-dihydroxyphenyl-l-alanine) side chains to mediate attachment to mineral surfaces underwater. Oxidation of DOPA to Dopaquinone (Q) effectively abolishes the adsorption of Mfps to these surfaces. The thiol-rich mussel foot protein-6 (Mfp-6) rescues adhesion compromised by adventitious DOPA oxidation by reducing Q back to DOPA. The redox chemistry and kinetics of foot-extracted Mfp-6 were investigated by using a nonspecific chromogenic probe to equilibrate with the redox pool. Foot-extracted Mfp-6 has a reducing capacity of ~17 e(-) per protein; half of this comes from the cysteine residues, whereas the other half comes from other constituents, probably a cohort of four or five nonadhesive, redox-active DOPA residues in Mfp-6 with an anodic peak potential ~500 mV lower than that for oxidation of cysteine to cystine. At higher pH, DOPA redox reversibility is lost possibly due to Q scavenging by Cys thiolates. Analysis by one- and two-dimensional proton nuclear magnetic resonance identified a pronounced ß-sheet structure with a hydrophobic core in foot-extracted Mfp-6 protein. The structure endows redox-active side chains in Mfp-6, i.e., cysteine and DOPA, with significant reducing power over a broad pH range, and this power is measurably diminished in recombinant Mfp-6.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Modelos Moleculares , Mytilus/fisiología , Adhesividad , Animales , Benzoquinonas/metabolismo , Biocatálisis , Compuestos de Bifenilo/metabolismo , Cisteína/química , Dihidroxifenilalanina/análogos & derivados , Dihidroxifenilalanina/metabolismo , Proteínas de la Matriz Extracelular/química , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/aislamiento & purificación , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Picratos/metabolismo , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
16.
J Am Chem Soc ; 138(29): 9013-6, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27415839

RESUMEN

Mussel foot proteins (Mfps) exhibit remarkably adaptive adhesion and bridging between polar surfaces in aqueous solution despite the strong hydration barriers at the solid-liquid interface. Recently, catechols and amines-two functionalities that account for >50 mol % of the amino acid side chains in surface-priming Mfps-were shown to cooperatively displace the interfacial hydration and mediate robust adhesion between mineral surfaces. Here we demonstrate that (1) synergy between catecholic and guanidinium side chains similarly promotes adhesion, (2) increasing the ratio of cationic amines to catechols in a molecule reduces adhesion, and (3) the catechol-cation synergy is greatest when both functionalities are present within the same molecule.

17.
Adv Funct Mater ; 26(20): 3496-3507, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27840600

RESUMEN

Water hampers the formation of strong and durable bonds between adhesive polymers and solid surfaces, in turn hindering the development of adhesives for biomedical and marine applications. Inspired by mussel adhesion, a mussel foot protein homologue (mfp3S-pep) is designed, whose primary sequence is designed to mimic the pI, polyampholyte, and hydrophobic characteristics of the native protein. Noticeably, native protein and synthetic peptide exhibit similar abilities to self-coacervate at given pH and ionic strength. 3,4-dihydroxy-l-phenylalanine (Dopa) proves necessary for irreversible peptide adsorption to both TiO2 (anatase) and hydroxyapatite (HAP) surfaces, as confirmed by quartz crystal microbalance measurements, with the coacervate showing superior adsorption. The adsorption of Dopa-containing peptides is investigated by attenuated total reflection infrared spectroscopy, revealing initially bidentate coordinative bonds on TiO2, followed by H-bonded and eventually long-ranged electrostatic and Van der Waals interactions. On HAP, mfp3s-pep-3Dopa adsorption occurs predominantly via H-bond and outer-sphere complexes of the catechol groups. Importantly, only the Dopa-bearing compounds are able to remove interfacial water from the target surfaces, with the coacervate achieving the highest water displacement arising from its superior wetting properties. These findings provide an impetus for developing coacervated Dopa-functionalized peptides/polymers adhesive formulations for a variety of applications on wet polar surfaces.

18.
Proc Natl Acad Sci U S A ; 110(39): 15680-5, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-24014592

RESUMEN

The adhesion of mussel foot proteins (Mfps) to a variety of specially engineered mineral and metal oxide surfaces has previously been investigated extensively, but the relevance of these studies to adhesion in biological environments remains unknown. Most solid surfaces exposed to seawater or physiological fluids become fouled by organic conditioning films and biofilms within minutes. Understanding the binding mechanisms of Mfps to organic films with known chemical and physical properties therefore is of considerable theoretical and practical interest. Using self-assembled monolayers (SAMs) on atomically smooth gold substrates and the surface forces apparatus, we explored the force-distance profiles and adhesion energies of three different Mfps, Mfp-1, Mfp-3, and Mfp-5, on (i) hydrophobic methyl (CH3)- and (ii) hydrophilic alcohol (OH)-terminated SAM surfaces between pH 3 and pH 7.5. At acidic pH, all three Mfps adhered strongly to the CH3-terminated SAM surfaces via hydrophobic interactions (range of adhesive interaction energy = -4 to -9 mJ/m(2)) but only weakly to the OH-terminated SAM surfaces through H- bonding (adhesive interaction energy ≤ -0.5 mJ/m(2)). 3, 4-Dihydroxyphenylalanine (Dopa) residues in Mfps mediate binding to both SAM surface types but do so through different interactions: typical bidentate H-bonding by Dopa is frustrated by the longer spacing of OH-SAMs; in contrast, on CH3-SAMs, Dopa in synergy with other nonpolar residues partitions to the hydrophobic surface. Asymmetry in the distribution of hydrophobic residues in intrinsically unstructured proteins, the distortion of bond geometry between H-bonding surfaces, and the manipulation of physisorbed binding lifetimes represent important concepts for the design of adhesive and nonfouling surfaces.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Compuestos Orgánicos/química , Proteínas/química , Adhesividad , Secuencia de Aminoácidos , Animales , Bivalvos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas/metabolismo , Propiedades de Superficie , Termodinámica
19.
J Am Chem Soc ; 137(29): 9214-7, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26172268

RESUMEN

Numerous attempts have been made to translate mussel adhesion to diverse synthetic platforms. However, the translation remains largely limited to the Dopa (3,4-dihydroxyphenylalanine) or catechol functionality, which continues to raise concerns about Dopa's inherent susceptibility to oxidation. Mussels have evolved adaptations to stabilize Dopa against oxidation. For example, in mussel foot protein 3 slow (mfp-3s, one of two electrophoretically distinct interfacial adhesive proteins in mussel plaques), the high proportion of hydrophobic amino acid residues in the flanking sequence around Dopa increases Dopa's oxidation potential. In this study, copolyampholytes, which combine the catechol functionality with amphiphilic and ionic features of mfp-3s, were synthesized and formulated as coacervates for adhesive deposition on surfaces. The ratio of hydrophilic/hydrophobic as well as cationic/anionic units was varied in order to enhance coacervate formation and wet adhesion properties. Aqueous solutions of two of the four mfp-3s-inspired copolymers showed coacervate-like spherical microdroplets (ϕ ≈ 1-5 µm at pH ∼4 (salt concentration ∼15 mM). The mfp-3s-mimetic copolymer was stable to oxidation, formed coacervates that spread evenly over mica, and strongly bonded to mica surfaces (pull-off strength: ∼17.0 mJ/m(2)). Increasing pH to 7 after coacervate deposition at pH 4 doubled the bonding strength to ∼32.9 mJ/m(2) without oxidative cross-linking and is about 9 times higher than native mfp-3s cohesion. This study expands the scope of translating mussel adhesion from simple Dopa-functionalization to mimicking the context of the local environment around Dopa.


Asunto(s)
Materiales Biomiméticos/química , Bivalvos , Proteínas/química , Adhesividad , Secuencia de Aminoácidos , Animales , Electroquímica , Datos de Secuencia Molecular , Polimetil Metacrilato/química , Propiedades de Superficie
20.
Adv Funct Mater ; 25(36): 5840-5847, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-28670243

RESUMEN

Mussel adhesion to mineral surfaces is widely attributed to 3,4-dihydroxyphenylalanine (Dopa) functionalities in the mussel foot proteins (mfps). Several mfps, however, show a broad range (30-100%) of Tyrosine (Tyr) to Dopa conversion suggesting that Dopa is not the only desirable outcome for adhesion. Here, we used a partial recombinant construct of mussel foot protein-1 (rmfp-1) and short decapeptide dimers with and without Dopa and assessed both their cohesive and adhesive properties on mica using a surface forces apparatus (SFA). Our results demonstrate that at low pH, both the unmodified and Dopa-containing rmfp-1s show similar energies for adhesion to mica and self-self interaction. Cohesion between two Dopa-containing rmfp-1 surfaces can be doubled by Fe3+ chelation, but remains unchanged with unmodified rmfp-1. At the same low pH, the Dopa modified short decapeptide dimer did not show any change in cohesive interactions even with Fe3+. Our results suggest that the most probable intermolecular interactions are those arising from electrostatic (i.e., cation-π) and hydrophobic interactions. We also show that Dopa in a peptide sequence does not by itself mediate Fe3+ bridging interactions between peptide films: peptide length is a crucial enabling factor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA