Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 176(5): 1098-1112.e18, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30794774

RESUMEN

Increased levels of intestinal bile acids (BAs) are a risk factor for colorectal cancer (CRC). Here, we show that the convergence of dietary factors (high-fat diet) and dysregulated WNT signaling (APC mutation) alters BA profiles to drive malignant transformations in Lgr5-expressing (Lgr5+) cancer stem cells and promote an adenoma-to-adenocarcinoma progression. Mechanistically, we show that BAs that antagonize intestinal farnesoid X receptor (FXR) function, including tauro-ß-muricholic acid (T-ßMCA) and deoxycholic acid (DCA), induce proliferation and DNA damage in Lgr5+ cells. Conversely, selective activation of intestinal FXR can restrict abnormal Lgr5+ cell growth and curtail CRC progression. This unexpected role for FXR in coordinating intestinal self-renewal with BA levels implicates FXR as a potential therapeutic target for CRC.


Asunto(s)
Neoplasias Intestinales/metabolismo , Células Madre Neoplásicas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Línea Celular , Proliferación Celular/genética , Neoplasias Colorrectales/metabolismo , Ácido Desoxicólico/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Intestinales/genética , Intestinos , Hígado , Ratones , Ratones Endogámicos C57BL , Células Madre Neoplásicas/fisiología , Organoides/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Factores de Riesgo , Transducción de Señal , Ácido Taurocólico/análogos & derivados , Ácido Taurocólico/metabolismo , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología
2.
Cell Rep ; 22(10): 2521-2529, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29514081

RESUMEN

PGC1α is a pleiotropic co-factor that affects angiogenesis, mitochondrial biogenesis, and oxidative muscle remodeling via its association with multiple transcription factors, including the master oxidative nuclear receptor ERRγ. To decipher their epistatic relationship, we explored ERRγ gain of function in muscle-specific PGC1α/ß double-knockout (PKO) mice. ERRγ-driven transcriptional reprogramming largely rescues muscle damage and improves muscle function in PKO mice, inducing mitochondrial biogenesis, antioxidant defense, angiogenesis, and a glycolytic-to-oxidative fiber-type transformation independent of PGC1α/ß. Furthermore, in combination with voluntary exercise, ERRγ gain of function largely restores mitochondrial energetic deficits in PKO muscle, resulting in a 5-fold increase in running performance. Thus, while PGC1s can interact with multiple transcription factors, these findings implicate ERRs as the major molecular target through which PGC1α/ß regulates both innate and adaptive energy metabolism.


Asunto(s)
Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Neovascularización Fisiológica , Proteínas Nucleares/metabolismo , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Receptores de Estrógenos/metabolismo , Factores de Transcripción/metabolismo , Animales , Metabolismo Energético , Ratones Noqueados , Oxidación-Reducción
3.
Cell Metab ; 25(5): 1186-1193.e4, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28467934

RESUMEN

Management of energy stores is critical during endurance exercise; a shift in substrate utilization from glucose toward fat is a hallmark of trained muscle. Here we show that this key metabolic adaptation is both dependent on muscle PPARδ and stimulated by PPARδ ligand. Furthermore, we find that muscle PPARδ expression positively correlates with endurance performance in BXD mouse reference populations. In addition to stimulating fatty acid metabolism in sedentary mice, PPARδ activation potently suppresses glucose catabolism and does so without affecting either muscle fiber type or mitochondrial content. By preserving systemic glucose levels, PPARδ acts to delay the onset of hypoglycemia and extends running time by ∼100 min in treated mice. Collectively, these results identify a bifurcated PPARδ program that underlies glucose sparing and highlight the potential of PPARδ-targeted exercise mimetics in the treatment of metabolic disease, dystrophies, and, unavoidably, the enhancement of athletic performance.


Asunto(s)
Glucosa/metabolismo , PPAR delta/metabolismo , Resistencia Física , Carrera , Animales , Línea Celular , Ácidos Grasos/metabolismo , Masculino , Ratones , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Condicionamiento Físico Animal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA