Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(6): e2218187120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36716358

RESUMEN

Chloroplast FoF1-ATP synthase (CFoCF1) converts proton motive force into chemical energy during photosynthesis. Although many studies have been done to elucidate the catalytic reaction and its regulatory mechanisms, biochemical analyses using the CFoCF1 complex have been limited because of various technical barriers, such as the difficulty in generating mutants and a low purification efficiency from spinach chloroplasts. By taking advantage of the powerful genetics available in the unicellular green alga Chlamydomonas reinhardtii, we analyzed the ATP synthesis reaction and its regulation in CFoCF1. The domains in the γ subunit involved in the redox regulation of CFoCF1 were mutated based on the reported structure. An in vivo analysis of strains harboring these mutations revealed the structural determinants of the redox response during the light/dark transitions. In addition, we established a half day purification method for the entire CFoCF1 complex from C. reinhardtii and subsequently examined ATP synthesis activity by the acid-base transition method. We found that truncation of the ß-hairpin domain resulted in a loss of redox regulation of ATP synthesis (i.e., constitutively active state) despite retaining redox-sensitive Cys residues. In contrast, truncation of the redox loop domain containing the Cys residues resulted in a marked decrease in the activity. Based on this mutation analysis, we propose a model of redox regulation of the ATP synthesis reaction by the cooperative function of the ß-hairpin and the redox loop domains specific to CFoCF1.


Asunto(s)
ATPasas de Translocación de Protón de Cloroplastos , Cloroplastos , ATPasas de Translocación de Protón de Cloroplastos/genética , ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Fotosíntesis/genética , Oxidación-Reducción , Adenosina Trifosfato/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34907017

RESUMEN

Thioredoxin (Trx) is a protein that mediates the reducing power transfer from the photosynthetic electron transport system to target enzymes in chloroplasts and regulates their activities. Redox regulation governed by Trx is a system that is central to the adaptation of various chloroplast functions to the ever-changing light environment. However, the factors involved in the opposite reaction (i.e., the oxidation of various enzymes) have yet to be revealed. Recently, it has been suggested that Trx and Trx-like proteins could oxidize Trx-targeted proteins in vitro. To elucidate the in vivo function of these proteins as oxidation factors, we generated mutant plant lines deficient in Trx or Trx-like proteins and studied how the proteins are involved in oxidative regulation in chloroplasts. We found that f-type Trx and two types of Trx-like proteins, Trx-like 2 and atypical Cys His-rich Trx (ACHT), seemed to serve as oxidation factors for Trx-targeted proteins, such as fructose-1,6-bisphosphatase, Rubisco activase, and the γ-subunit of ATP synthase. In addition, ACHT was found to be involved in regulating nonphotochemical quenching, which is the mechanism underlying the thermal dissipation of excess light energy. Overall, these results indicate that Trx and Trx-like proteins regulate chloroplast functions in concert by controlling the redox state of various photosynthesis-related proteins in vivo.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/enzimología , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Tiorredoxinas/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sistemas CRISPR-Cas , Cloroplastos/genética , Cloroplastos/metabolismo , Luz , Mutación , Oxidación-Reducción , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Tiorredoxinas/genética
3.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33531363

RESUMEN

Many enzymes involved in photosynthesis possess highly conserved cysteine residues that serve as redox switches in chloroplasts. These redox switches function to activate or deactivate enzymes during light-dark transitions and have the function of fine-tuning their activities according to the intensity of light. Accordingly, many studies on chloroplast redox regulation have been conducted under the hypothesis that "fine regulation of the activities of these enzymes is crucial for efficient photosynthesis." However, the impact of the regulatory system on plant metabolism is still unclear. To test this hypothesis, we here studied the impact of the ablation of a redox switch in chloroplast NADP-malate dehydrogenase (MDH). By genome editing, we generated a mutant plant whose MDH lacks one of its redox switches and is active even in dark conditions. Although NADPH consumption by MDH in the dark is expected to be harmful to plant growth, the mutant line did not show any phenotypic differences under standard long-day conditions. In contrast, the mutant line showed severe growth retardation under short-day or fluctuating light conditions. These results indicate that thiol-switch redox regulation of MDH activity is crucial for maintaining NADPH homeostasis in chloroplasts under these conditions.


Asunto(s)
Cloroplastos/genética , Malato-Deshidrogenasa (NADP+)/genética , Fotosíntesis/genética , Tiorredoxinas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Cisteína/genética , Embryophyta/genética , Embryophyta/crecimiento & desarrollo , Luz , Oxidación-Reducción
4.
J Biol Chem ; 298(11): 102541, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36174673

RESUMEN

Chloroplast FoF1-ATP synthase (CFoCF1) uses an electrochemical gradient of protons across the thylakoid membrane (ΔµH+) as an energy source in the ATP synthesis reaction. CFoCF1 activity is regulated by the redox state of a Cys pair on its central axis, that is, the γ subunit (CF1-γ). When the ΔµH+ is formed by the photosynthetic electron transfer chain under light conditions, CF1-γ is reduced by thioredoxin (Trx), and the entire CFoCF1 enzyme is activated. The redox regulation of CFoCF1 is a key mechanism underlying the control of ATP synthesis under light conditions. In contrast, the oxidative deactivation process involving CFoCF1 has not been clarified. In the present study, we analyzed the oxidation of CF1-γ by two physiological oxidants in the chloroplast, namely the proteins Trx-like 2 and atypical Cys-His-rich Trx. Using the thylakoid membrane containing the reduced form of CFoCF1, we were able to assess the CF1-γ oxidation ability of these Trx-like proteins. Our kinetic analysis indicated that these proteins oxidized CF1-γ with a higher efficiency than that achieved by a chemical oxidant and typical chloroplast Trxs. Additionally, the CF1-γ oxidation rate due to Trx-like proteins and the affinity between them were changed markedly when ΔµH+ formation across the thylakoid membrane was manipulated artificially. Collectively, these results indicate that the formation status of the ΔµH+ controls the redox regulation of CFoCF1 to prevent energetic disadvantages in plants.


Asunto(s)
ATPasas de Translocación de Protón de Cloroplastos , Protones , Tiorredoxinas , Adenosina Trifosfato/metabolismo , ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Cinética , Oxidación-Reducción , Tiorredoxinas/metabolismo , Tilacoides/enzimología , Plantas/enzimología
5.
Plant Cell Physiol ; 64(12): 1590-1600, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37706547

RESUMEN

Cyanobacteria are promising photosynthetic organisms owing to their ease of genetic manipulation. Among them, Synechococcus elongatus UTEX 2973 exhibits faster growth, higher biomass production efficiency and more robust stress tolerance compared with S. elongatus PCC 7942. This is due to specific genetic differences, including four single-nucleotide polymorphisms (SNPs) in three genes. One of these SNPs alters an amino acid at position 252 of the FoF1 ATP synthase α-subunit from Tyr to Cys (αY252C) in S. elongatus 7942. This change has been shown to significantly affect growth rate and stress tolerance, specifically in S. elongatus. Furthermore, experimental substitutions with several other amino acids have been shown to alter the ATP synthesis rate in the cell. In the present study, we introduced identical amino acid substitutions into Synechocystis sp. PCC 6803 at position 252 to elucidate the amino acid's significance and generality across cyanobacteria. We investigated the resulting impact on growth, intracellular enzyme complex levels, intracellular ATP levels and enzyme activity. The results showed that the αY252C substitution decreased growth rate and high-light tolerance. This indicates that a specific bulkiness of this amino acid's side chain is important for maintaining cell growth. Additionally, a remarkable decrease in the membrane-bound enzyme complex level was observed. However, the αY252C substitution did not affect enzyme activity or intracellular ATP levels. Although the mechanism of growth suppression remains unknown, the amino acid at position 252 is expected to play an important role in enzyme complex formation.


Asunto(s)
Synechococcus , Synechocystis , Aminoácidos/metabolismo , Proteínas Bacterianas/metabolismo , Synechococcus/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Fotosíntesis/genética , Adenosina Trifosfato/metabolismo
6.
J Biol Chem ; 296: 100156, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33273011

RESUMEN

Determination of cellular ATP levels, a key indicator of metabolic status, is essential for the quantitative analysis of metabolism. The biciliate green alga Chlamydomonas reinhardtii is an excellent experimental organism to study ATP production pathways, including photosynthesis and respiration, particularly because it can be cultured either photoautotrophically or heterotrophically. Additionally, its cellular ATP concentration, [ATP], is reflected in the beating of its cilia. However, the methods currently used for quantifying the cellular ATP levels are time consuming or invasive. In this study, we established a rapid method for estimating cytosolic [ATP] from the ciliary beating frequency in C. reinhardtii. Using an improved method of motility reactivation in demembranated cell models, we obtained calibration curves for [ATP]-ciliary beating frequency over a physiological range of ATP concentrations. These curves allowed rapid estimation of the cytosolic [ATP] in live wild-type cells to be ∼2.0 mM in the light and ∼1.5 mM in the dark: values comparable to those obtained by other methods. Furthermore, we used this method to assess the effects of genetic mutations or inhibitors of photosynthesis or respiration quantitatively and noninvasively. This sensor-free method is a convenient tool for quickly estimating cytosolic [ATP] and studying the mechanism of ATP production in C. reinhardtii or other ciliated organisms.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Axonema/metabolismo , Bioensayo , Chlamydomonas reinhardtii/metabolismo , Cilios/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/análisis , Axonema/efectos de los fármacos , Axonema/ultraestructura , Chlamydomonas reinhardtii/efectos de los fármacos , Chlamydomonas reinhardtii/ultraestructura , Cilios/efectos de los fármacos , Cilios/ultraestructura , Luz , Mediciones Luminiscentes , Magnesio/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Fosforilación Oxidativa/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Rotenona/farmacología
7.
J Biol Chem ; 297(4): 101186, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34517006

RESUMEN

Reactive oxygen species are key factors that strongly affect the cellular redox state and regulate various physiological and cellular phenomena. To monitor changes in the redox state, we previously developed fluorescent redox sensors named Re-Q, the emissions of which are quenched under reduced conditions. However, such fluorescent probes are unsuitable for use in the cells of photosynthetic organisms because they require photoexcitation that may change intracellular conditions and induce autofluorescence, primarily in chlorophylls. In addition, the presence of various chromophore pigments may interfere with fluorescence-based measurements because of their strong absorbance. To overcome these problems, we adopted the bioluminescence resonance energy transfer (BRET) mechanism for the sensor and developed two BRET-based redox sensors by fusing cyan fluorescent protein-based or yellow fluorescent protein-based Re-Q with the luminescent protein Nluc. We named the resulting redox-sensitive BRET-based indicator probes "ROBINc" and "ROBINy." ROBINc is pH insensitive, which is especially vital for observation in photosynthetic organisms. By using these sensors, we successfully observed dynamic redox changes caused by an anticancer agent in HeLa cells and light/dark-dependent redox changes in the cells of photosynthetic cyanobacterium Synechocystis sp. PCC 6803. Since the newly developed sensors do not require excitation light, they should be especially useful for visualizing intracellular phenomena caused by redox changes in cells containing colored pigments.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes , Synechocystis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Oxidación-Reducción , Synechocystis/genética , Synechocystis/metabolismo
8.
J Biol Chem ; 296: 100134, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33268379

RESUMEN

pH is one of the most critical physiological parameters determining vital cellular activities, such as photosynthetic performance. Fluorescent sensor proteins capable of measuring in situ pH in animal cells have been reported. However, these proteins require an excitation laser for pH measurement that may affect photosynthetic performance and induce autofluorescence from chlorophyll. As a result, it is not possible to measure the intracellular or intraorganelle pH changes in plants. To overcome this problem, we developed a luminescent pH sensor by fusing the luminescent protein Nanoluc to a uniquely designed pH-sensitive GFP variant protein. In this system, an excitation laser is unnecessary because the fused GFP variant reports on the luminescent signal by bioluminescence resonance energy transfer from Nanoluc. The ratio of two luminescent peaks from the sensor protein was approximately linear with respect to pH in the range of 7.0 to 8.5. We designated this sensor protein as "luminescent pH indicator protein" (Luphin). We applied Luphin to the in situ pH measurement of a photosynthetic organism under fluctuating light conditions, allowing us to successfully observe the cytosolic pH changes associated with photosynthetic electron transfer in the cyanobacterium Synechocystis sp. PCC 6803. Detailed analyses of the mechanisms of the observed estimated pH changes in the cytosol in this alga suggested that the photosynthetic electron transfer is suppressed by the reduced plastoquinone pool under light conditions. These results indicate that Luphin may serve as a helpful tool to further illuminate pH-dependent processes throughout the photosynthetic organisms.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Synechocystis/metabolismo , Técnicas Biosensibles/métodos , Células Cultivadas , Clorofila/metabolismo , Concentración de Iones de Hidrógeno , Fotosíntesis
9.
Plant Cell Physiol ; 63(6): 855-868, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35413120

RESUMEN

Phosphoribulokinase (PRK), one of the enzymes in the Calvin-Benson cycle, is a well-known target of thioredoxin (Trx), which regulates various enzyme activities by the reduction of disulfide bonds in a light-dependent manner. PRK has two Cys pairs conserved in the N-terminal and C-terminal regions, and the N-terminal one near the active site is thought to be responsible for the regulation. The flexible clamp loop located between the N-terminal two Cys residues has been deemed significant to Trx-mediated regulation. However, cyanobacterial PRK is also subject to Trx-dependent activation despite the lack of this clamp loop. We, therefore, compared Trx-mediated regulation of PRK from the cyanobacterium Anabaena sp. PCC 7120 (A.7120_PRK) and that from the land plant Arabidopsis thaliana (AtPRK). Interestingly, peptide mapping and site-directed mutagenesis analysis showed that Trx was more effective in changing the redox states of the C-terminal Cys pair in both A.7120_PRK and AtPRK. In addition, the effect of redox state change of the C-terminal Cys pair on PRK activity was different between A.7120_PRK and AtPRK. Trx-mediated redox regulation of the C-terminal Cys pair was also important for complex dissociation/formation with CP12 and glyceraldehyde 3-phosphate dehydrogenase. Furthermore, in vivo analysis of the redox states of PRK showed that only one disulfide bond is reduced in response to light. Based on the enzyme activity assay and the complex formation analysis, we concluded that Trx-mediated regulation of the C-terminal Cys pair of PRK is important for activity regulation in cyanobacteria and complex dissociation/formation in both organisms.


Asunto(s)
Arabidopsis , Cianobacterias , Arabidopsis/metabolismo , Cianobacterias/metabolismo , Disulfuros , Oxidación-Reducción , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fotosíntesis/fisiología , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
10.
Biochem Biophys Res Commun ; 596: 97-103, 2022 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-35121375

RESUMEN

Reactive oxygen species (ROS) can both act as a poison causing cell death and important signaling molecules among various organisms. Photosynthetic organisms inevitably produce ROS, making the appropriate elimination of ROS an essential strategy for survival. Interestingly, the unicellular green alga Chlamydomonas reinhardtii expresses a mammalian form of thioredoxin reductase, TR1, which functions as a ROS scavenger in animal cells. To investigate the properties of TR1 in C. reinhardtii, we generated TR1 knockout strains using CRISPR/Cas9-based genome editing. We found a reduced tolerance to high-light and ROS stresses in the TR1 knockout strains compared to the parental strain. In addition, the regulation of phototactic orientation, known to be regulated by ROS, was affected in the knockout strains. These results suggest that TR1 contributes to a ROS-scavenging pathway in C. reinhardtii.


Asunto(s)
Proteínas Algáceas/genética , Chlamydomonas reinhardtii/genética , Luz , Tolerancia a Radiación/genética , Tiorredoxina Reductasa 1/genética , Proteínas Algáceas/metabolismo , Animales , Sistemas CRISPR-Cas , Chlamydomonas reinhardtii/enzimología , Chlamydomonas reinhardtii/efectos de la radiación , Edición Génica/métodos , Técnicas de Inactivación de Genes , Peróxido de Hidrógeno/farmacología , Mamíferos/genética , Mamíferos/metabolismo , Oxidantes/farmacología , Fotosíntesis/genética , Fotosíntesis/efectos de la radiación , Fototaxis/efectos de los fármacos , Fototaxis/efectos de la radiación , RNA-Seq/métodos , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxina Reductasa 1/metabolismo
11.
Genes Cells ; 25(1): 6-21, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31957229

RESUMEN

Motility often plays a decisive role in the survival of species. Five systems of motility have been studied in depth: those propelled by bacterial flagella, eukaryotic actin polymerization and the eukaryotic motor proteins myosin, kinesin and dynein. However, many organisms exhibit surprisingly diverse motilities, and advances in genomics, molecular biology and imaging have showed that those motilities have inherently independent mechanisms. This makes defining the breadth of motility nontrivial, because novel motilities may be driven by unknown mechanisms. Here, we classify the known motilities based on the unique classes of movement-producing protein architectures. Based on this criterion, the current total of independent motility systems stands at 18 types. In this perspective, we discuss these modes of motility relative to the latest phylogenetic Tree of Life and propose a history of motility. During the ~4 billion years since the emergence of life, motility arose in Bacteria with flagella and pili, and in Archaea with archaella. Newer modes of motility became possible in Eukarya with changes to the cell envelope. Presence or absence of a peptidoglycan layer, the acquisition of robust membrane dynamics, the enlargement of cells and environmental opportunities likely provided the context for the (co)evolution of novel types of motility.


Asunto(s)
Movimiento Celular/genética , Movimiento Celular/fisiología , Flagelos/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animales , Bacterias , Evolución Biológica , Dineínas/metabolismo , Evolución Molecular , Flagelos/genética , Humanos , Cinesinas/metabolismo , Miosinas/metabolismo , Filogenia
12.
Adv Exp Med Biol ; 1293: 21-33, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33398805

RESUMEN

Channelrhodopsins (ChRs) are the light-gated ion channels that have opened the research field of optogenetics. They were originally identified in the green alga Chlamydomonas reinhardtii, a biciliated unicellular alga that inhabits in freshwater, swims with the cilia, and undergoes photosynthesis. It has various advantages as an experimental organism and is used in a wide range of research fields including photosynthesis, cilia, and sexual reproduction. ChRs function as the primary photoreceptor for the cell's photo-behavioral responses, seen as changes in the manner of swimming after photoreception. In this chapter, we will introduce C. reinhardtii as an experimental organism and explain our current understanding of how the cell senses light and shows photo-behavioral responses.


Asunto(s)
Channelrhodopsins/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/efectos de la radiación , Luz , Channelrhodopsins/efectos de la radiación , Chlamydomonas reinhardtii/citología , Cilios/fisiología , Optogenética/métodos , Fotosíntesis
13.
Proc Natl Acad Sci U S A ; 115(5): E1061-E1068, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29311312

RESUMEN

Volvox rousseletii is a multicellular spheroidal green alga containing ∼5,000 cells, each equipped with two flagella (cilia). This organism shows striking photobehavior without any known intercellular communication. To help understand how the behavior of flagella is regulated, we developed a method to extract the whole organism with detergent and reactivate its flagellar motility. Upon addition of ATP, demembranated flagella (axonemes) in the spheroids actively beat and the spheroids swam as if they were alive. Under Ca2+-free conditions, the axonemes assumed planar and asymmetrical waveforms and beat toward the posterior pole, as do live spheroids in the absence of light stimulation. In the presence of 10-6 M Ca2+, however, most axonemes beat three-dimensionally toward the anterior pole, similar to flagella in photostimulated live spheroids. This Ca2+-dependent change in flagellar beating direction was more conspicuous near the anterior pole of the spheroid, but was not observed near the posterior pole. This anterior-posterior gradient of flagellar Ca2+ sensitivity may explain the mechanism of V. rousseletii photobehavior.


Asunto(s)
Calcio/fisiología , Detergentes/química , Flagelos/fisiología , Fototaxis , Volvox/fisiología , Adenosina Trifosfato/química , Axonema/fisiología , Microscopía de Contraste de Fase , Movimiento , Fotosíntesis , Grabación en Video
14.
J Biol Chem ; 294(26): 10094-10103, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31068416

RESUMEN

ATP hydrolysis activity catalyzed by chloroplast and proteobacterial ATP synthase is inhibited by their ϵ subunits. To clarify the function of the ϵ subunit from phototrophs, here we analyzed the ϵ subunit-mediated inhibition (ϵ-inhibition) of cyanobacterial F1-ATPase, a subcomplex of ATP synthase obtained from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. We generated three C-terminal α-helix null ϵ-mutants; one lacked the C-terminal α-helices, and in the other two, the C-terminal conformation could be locked by a disulfide bond formed between two α-helices or an α-helix and a ß-sandwich structure. All of these ϵ-mutants maintained ATPase-inhibiting competency. We then used single-molecule observation techniques to analyze the rotary motion of F1-ATPase in the presence of these ϵ-mutants. The stop angular position of the γ subunit in the presence of the ϵ-mutant was identical to that in the presence of the WT ϵ. Using magnetic tweezers, we examined recovery from the inhibited rotation and observed restoration of rotation by 80° forcing of the γ subunit in the case of the ADP-inhibited form, but not when the rotation was inhibited by the ϵ-mutants or by the WT ϵ subunit. These results imply that the C-terminal α-helix domain of the ϵ subunit of cyanobacterial enzyme does not directly inhibit ATP hydrolysis and that its N-terminal domain alone can inhibit the hydrolysis activity. Notably, this property differed from that of the proteobacterial ϵ, which could not tightly inhibit rotation. We conclude that phototrophs and heterotrophs differ in the ϵ subunit-mediated regulation of ATP synthase.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Cianobacterias/enzimología , ATPasas de Translocación de Protón/antagonistas & inhibidores , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Conformación Proteica , Subunidades de Proteína , Homología de Secuencia
15.
J Biol Chem ; 294(46): 17437-17450, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31597700

RESUMEN

Thioredoxin (Trx) is a redox-responsive protein that modulates the activities of its target proteins mostly by reducing their disulfide bonds. In chloroplasts, five Trx isoforms (Trx-f, Trx-m, Trx-x, Trx-y, and Trx-z) regulate various photosynthesis-related enzymes with distinct target selectivity. To elucidate the determinants of the target selectivity of each Trx isoform, here we investigated the residues responsible for target recognition by Trx-f, the most well-studied chloroplast-resident Trx. As reported previously, we found that positively-charged residues on the Trx-f surface are involved in the interactions with its targets. Moreover, several residues that are specifically conserved in Trx-f (e.g. Cys-126 and Thr-158) were also involved in interactions with target proteins. The validity of these residues was examined by the molecular dynamics simulation. In addition, we validated the impact of these key residues on target protein reduction by studying (i) Trx-m variants into which we introduced the key residues for Trx-f and (ii) Trx-like proteins, named atypical Cys His-rich Trx 1 (ACHT1) and ACHT2a, that also contain these key residues. These artificial or natural protein variants could reduce Trx-f-specific targets, indicating that the key residues for Trx-f are critical for Trx-f-specific target recognition. Furthermore, we demonstrate that ACHT1 and ACHT2a efficiently oxidize some Trx-f-specific targets, suggesting that its target selectivity also contributes to the oxidative regulation process. Our results reveal the key residues for Trx-f-specific target recognition and uncover ACHT1 and ACHT2a as oxidation factors of their target proteins, providing critical insight into redox regulation of photosynthesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Tiorredoxinas en Cloroplasto/metabolismo , Secuencia de Aminoácidos , Arabidopsis/química , Proteínas de Arabidopsis/química , Tiorredoxinas en Cloroplasto/química , Secuencia Conservada , Modelos Moleculares , Oxidación-Reducción , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
16.
Zoolog Sci ; 37(1): 7-13, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32068369

RESUMEN

The outer dynein arm-docking complex (ODA-DC), which was first identified in the green alga Chlamydomonas reinhardtii, is a protein complex that mediates the binding of axonemal dynein and doublet microtubules. To gain a better understanding of the evolutionary conservation and functional diversity of the ODA-DC, we knocked down a homolog of DC2, a major subunit of the ODA-DC, in the planarian Schmidtea mediterranea. Planaria are carnivorous flatworms that move by beating cilia on their ventral surface against a secreted mucus layer. These organisms have recently been used for cilia research because knockdown of flatworm genes by RNA interference (RNAi) is readily achieved through feeding with double-stranded RNA (dsRNA). Lack of DC2 in S. mediterranea caused several defects in cilia, including low beat frequency, decreased ciliary density, and a reduction in ciliary length. The loss of DC2 function C. reinhardtii mutant oda1 shows slow jerky swimming, but has two flagella of almost normal length. These data suggest that the function of a DC2 homolog in S. mediterranea cilia may be somewhat different from DC2 in C. reinhardtii flagella.


Asunto(s)
Dineínas Axonemales/metabolismo , Cilios/patología , Planarias/metabolismo , Secuencia de Aminoácidos , Animales , Dineínas Axonemales/genética , Cilios/genética , Cilios/metabolismo , Cilios/ultraestructura , Flagelos , Microscopía Electrónica de Transmisión , Movimiento , Planarias/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Interferencia de ARN
17.
Biochem J ; 476(12): 1771-1780, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31164401

RESUMEN

The γ-subunit of cyanobacterial and chloroplast ATP synthase, the rotary shaft of F1-ATPase, equips a specific insertion region that is only observed in photosynthetic organisms. This region plays a physiologically pivotal role in enzyme regulation, such as in ADP inhibition and redox response. Recently solved crystal structures of the γ-subunit of F1-ATPase from photosynthetic organisms revealed that the insertion region forms a ß-hairpin structure, which is positioned along the central stalk. The structure-function relationship of this specific region was studied by constraining the expected conformational change in this region caused by the formation of a disulfide bond between Cys residues introduced on the central stalk and this ß-hairpin structure. This fixation of the ß-hairpin region in the α3ß3γ complex affects both ADP inhibition and the binding of the ε-subunit to the complex, indicating the critical role that the ß-hairpin region plays as a regulator of the enzyme. This role must be important for the maintenance of the intracellular ATP levels in photosynthetic organisms.


Asunto(s)
Adenosina Trifosfato/química , Proteínas Bacterianas/química , Cianobacterias/enzimología , ATPasas de Translocación de Protón/química , Adenosina Trifosfato/genética , Proteínas Bacterianas/genética , Cianobacterias/genética , Estructura Secundaria de Proteína , ATPasas de Translocación de Protón/genética
18.
Plant Cell Physiol ; 60(7): 1504-1513, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31038682

RESUMEN

Cyanobacteria possess a sophisticated photosynthesis-based metabolism with admirable plasticity. This plasticity is possible via the deep regulation network, the thiol-redox regulations operated by thioredoxin (hereafter, Trx). In this context, we characterized the Trx-m1-deficient mutant strain of Anabaena sp., PCC 7120 (shortly named A.7120), cultivated under nitrogen limitation. Trx-m1 appears to coordinate the nitrogen response and its absence induces large changes in the proteome. Our data clearly indicate that Trx-m1 is crucial for the diazotrophic growth of A.7120. The lack of Trx-m1 resulted in a large differentiation of heterocysts (>20% of total cells), which were barely functional probably due to a weak expression of nitrogenase. In addition, heterocysts of the mutant strain did not display the usual cellular structure of nitrogen-fixative cells. This unveiled why the mutant strain was not able to grow under nitrogen starvation.


Asunto(s)
Anabaena/genética , Tiorredoxinas en Cloroplasto/fisiología , Genes Bacterianos/fisiología , Nitrógeno/deficiencia , Anabaena/crecimiento & desarrollo , Anabaena/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Tiorredoxinas en Cloroplasto/genética , Cloroplastos/metabolismo , Genes Bacterianos/genética , Microscopía Electrónica de Transmisión , Fotosíntesis , Proteoma
19.
Biochem J ; 475(6): 1091-1105, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29440317

RESUMEN

Glucose 6-phosphate dehydrogenase (G6PDH) catalyzes the first reaction in the oxidative pentose phosphate pathway. In green plant chloroplasts, G6PDH is a unique redox-regulated enzyme, since it is inactivated under the reducing conditions. This regulation is accomplished using a redox-active cysteine pair, which is conserved in plant G6PDH. The inactivation of this enzyme under conditions of light must be beneficial to prevent release of CO2 from the photosynthetic carbon fixation cycle. In the filamentous, heterocyst-forming, nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 (Anabaena 7120), G6PDH plays a pivotal role in providing reducing power for nitrogenase, and its activity is also reported to be suppressed by reduction, though Anabaena G6PDH does not conserve the critical cysteines for regulation. Based on the thorough analyses of the redox regulation mechanisms of G6PDH from Anabaena 7120 and its activator protein OpcA, we found that m-type thioredoxin regulates G6PDH activity by changing the redox states of OpcA. Mass spectrometric analysis and mutagenesis studies indicate that Cys393 and Cys399 of OpcA are responsible for the redox regulation property of this protein. Moreover, in vivo analyses of the redox states of OpcA showed that more than half of the OpcA is present as an oxidized form, even under conditions of light, when cells are cultured under the nitrogen-fixing conditions. This redox regulation of OpcA might be necessary to provide reducing power for nitrogenase by G6PDH in heterocysts even during the day.


Asunto(s)
Anabaena , Proteínas Bacterianas/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Fijación del Nitrógeno , Tiorredoxinas/fisiología , Anabaena/genética , Anabaena/crecimiento & desarrollo , Anabaena/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Fijación del Nitrógeno/genética , Organismos Modificados Genéticamente , Oxidación-Reducción , Fotosíntesis/genética , Tiorredoxinas/genética
20.
Proc Natl Acad Sci U S A ; 113(19): 5299-304, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27122315

RESUMEN

The biflagellate green alga Chlamydomonas reinhardtii exhibits both positive and negative phototaxis to inhabit areas with proper light conditions. It has been shown that treatment of cells with reactive oxygen species (ROS) reagents biases the phototactic sign to positive, whereas that with ROS scavengers biases it to negative. Taking advantage of this property, we isolated a mutant, lts1-211, which displays a reduction-oxidation (redox) dependent phototactic sign opposite to that of the wild type. This mutant has a single amino acid substitution in phytoene synthase, an enzyme that functions in the carotenoid-biosynthesis pathway. The eyespot contains large amounts of carotenoids and is crucial for phototaxis. Most lts1-211 cells have no detectable eyespot and reduced carotenoid levels. Interestingly, the reversed phototactic-sign phenotype of lts1-211 is shared by other eyespot-less mutants. In addition, we directly showed that the cell body acts as a convex lens. The lens effect of the cell body condenses the light coming from the rear onto the photoreceptor in the absence of carotenoid layers, which can account for the reversed-phototactic-sign phenotype of the mutants. These results suggest that light-shielding property of the eyespot is essential for determination of phototactic sign.


Asunto(s)
Carotenoides/fisiología , Movimiento Celular/fisiología , Chlamydomonas reinhardtii/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Fototaxis/fisiología , Animales , Carotenoides/efectos de la radiación , Movimiento Celular/efectos de la radiación , Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/efectos de la radiación , Luz , Células Fotorreceptoras de Invertebrados/efectos de la radiación , Pigmentación/fisiología , Pigmentación/efectos de la radiación , Dosis de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA