Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Nano Lett ; 23(1): 319-325, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36580275

RESUMEN

Logic-in-memory (LIM) has emerged as an energy-efficient computing technology, as it integrates logic and memory operations in a single device architecture. Herein, a concept of ternary LIM is established. First, a p-type 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) transistor is combined with an n-type PhC2H4-benzo[de]isoquinolino[1,8-gh]quinolone diimide (PhC2-BQQDI) transistor to obtain a binary memory inverter, in which a zinc phthalocyanine-cored polystyrene (ZnPc-PS4) layer serves as a floating gate. The contrasting photoresponse of the transistors toward visible and ultraviolet light and the efficient hole-trapping ability of ZnPc-PS4 enable us to achieve an optically controllable memory operation with a high memory window of 18 V. Then, a ternary memory inverter is developed using an anti-ambipolar transistor to achieve a three-level data processing and storage system for more advanced LIM applications. Finally, low-voltage operation of the devices is achieved by employing a high-k dielectric layer, which highlights the potential of the developed LIM units for next-generation low-power electronics.


Asunto(s)
Electrónica , Indoles , Poliestirenos , Rayos Ultravioleta
2.
Nano Lett ; 23(17): 8339-8347, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37625158

RESUMEN

We demonstrate an electrically reconfigurable two-input logic-in-memory (LIM) using a dual-gate-type organic antiambipolar transistor (DG-OAAT). The attractive feature of this device is that a phthalocyanine-cored star-shaped polystyrene is used as a nano-floating gate, which enables the electrical switching of individual logic circuits and stores the circuit information by the nonvolatile memory effect. First, the DG-OAAT exhibited Λ-shaped transfer curves with hysteresis by sweeping the bottom-gate voltage. Programming and erasing operations enabled the reversible shift of the Λ-shaped transfer curves. Furthermore, the top-gate voltage effectively tuned the peak voltages of the transfer curves. Consequently, the combination of dual-gate and memory effects achieved electrically reconfigurable two-input LIM operations. Individual logic circuits (e.g., OR/NAND, XOR/NOR, and AND/XOR) were reconfigured by the corresponding programming and erasing operations without any variations in the input signals. Our device concept has the potential to fulfill an epoch-making organic integration circuit with a simple device configuration.

3.
Chemistry ; 29(65): e202302181, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37658627

RESUMEN

Supramolecular polymers are formed through nucleation (i. e., initiation) and polymerization processes, and kinetic control over the nucleation process has recently led to the realization of living supramolecular polymerization. Changing the viewpoint, herein we focus on controlling the polymerization process, which we expect to pave the way to further developments in controlled supramolecular polymerization. In our previous study, two-dimensional living supramolecular polymerization was used to produce supramolecular nanosheets with a controlled area; however, these had rough edges. In this study, the growth of the nanosheets was controlled by using a 'dummy' monomer to produce supramolecular nanosheets with smoothed edges.

4.
Nanotechnology ; 34(50)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37800179

RESUMEN

Considerable effort has been dedicated to improving molecular devices since they were initially proposed by Aviram and Ratner in 1974. Organic molecules are small and have discrete molecular orbitals. These features can facilitate fascinating quantum transport phenomena, such as single-carrier tunneling, resonant tunneling, and quantum interference. The effective gate modulation of these quantum transport phenomena holds the promise of realizing a new computing architecture that differs from that of current Si electronics. In this article, we review the recent research progress on molecular transistors, specifically vertical molecular transistors (VMTs). First, we discuss the benefits of VMTs for future molecular-scale transistors compared with the currently dominant lateral molecular transistors. Subsequently, we describe representative examples of VMTs, where single molecules, self-assembled monolayers, and isolated molecules are used as transistor channels. Finally, we present our conclusions and perspectives about the use of VMTs for attractive quantum devices.

5.
Nano Lett ; 20(4): 2551-2557, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32186384

RESUMEN

Graphene/hexagonal boron nitride (hBN) moiré superlattices have attracted interest for use in the study of many-body effects and fractal physics in Dirac fermion systems. Many exotic transport properties have been intensively examined in such superlattices, but previous studies have not focused on single-carrier transport. The investigation of the single-carrier behavior in these superlattices would lead to an understanding of the transition of single-particle/correlated phenomena. Here, we show the single-carrier transport in a high-quality bilayer graphene/hBN superlattice-based quantum dot device. We demonstrate remarkable device controllability in the energy range near the charge neutrality point (CNP) and the hole-side satellite point. Under a perpendicular magnetic field, Coulomb oscillations disappear near the CNP, which could be a signature of the crossover between Coulomb blockade and quantum Hall regimes. Our results pave the way for exploring the relationship of single-electron transport and fractal quantum Hall effects with correlated phenomena in two-dimensional quantum materials.

6.
Nano Lett ; 18(7): 4355-4359, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29961329

RESUMEN

Multivalued logic circuits, which can handle more information than conventional binary logic circuits, have attracted much attention as a promising way to improve the data-processing capabilities of integrated circuits. In this study, we developed a ternary inverter based on organic field-effect transistors (OFET) as a potential component of high-performance and flexible integrated circuits. Key elements are anti-ambipolar and n-type OFETs connected in series. First, we demonstrate an organic ternary inverter that exhibits three distinct logic states. Second, the operating voltage was greatly reduced by taking advantage of an Al2O3 gate dielectric. Finally, the operating voltage was finely tuned by the designing of the device geometry. These results are achievable owing to the flexible controllability of the device configuration, suggesting that the organic ternary inverter plays an important role with regard to high-performance organic integrated circuits.

7.
Nano Lett ; 16(12): 7474-7480, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960497

RESUMEN

Optical switching organic field-effect transistors (OFETs) provide a new direction for optoelectronics based on photochromic molecules. However, the patterning of OFETs is difficult because conventional fabrication processes, including lithography and ion etching, inevitably cause severe damage to organic molecules. Here, we demonstrate laser patterning of one-dimensional (1D) channels on an OFET with a photochromic diarylethene (DAE) layer. The main findings are (i) a number of 1D channels can be repeatedly written and erased in the DAE layer by scanning focused ultraviolet and visible light laser beams alternately between the source and drain electrodes, (ii) the conductivity (or resistivity) of the 1D channel can be controlled by the illumination conditions, such as the laser power density and the scan speed, and (iii) it is possible to draw an analogue adder circuit by optically writing 1D channels so that a portion of the channels overlaps and to perform optical summing operations by local laser illumination of the respective channels. These findings will open new possibilities for realizing various optically reconfigurable, low-dimensional organic transistor circuits, which are not possible with conventional thin film OFETs.

8.
Sci Technol Adv Mater ; 15(2): 024202, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27877655

RESUMEN

Recent progress in photoactive organic field-effect transistors (OFETs) is reviewed. Photoactive OFETs are divided into light-emitting (LE) and light-receiving (LR) OFETs. In the first part, LE-OFETs are reviewed from the viewpoint of the evolution of device structures. Device performances have improved in the last decade with the evolution of device structures from single-layer unipolar to multi-layer ambipolar transistors. In the second part, various kinds of LR-OFETs are featured. These are categorized according to their functionalities: phototransistors, non-volatile optical memories, and photochromism-based transistors. For both, various device configurations are introduced: thin-film based transistors for practical applications, single-crystalline transistors to investigate fundamental physics, nanowires, multi-layers, and vertical transistors based on new concepts.

9.
ACS Appl Mater Interfaces ; 16(26): 33796-33805, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38910437

RESUMEN

In-memory computing may make it possible to realize non-von Neumann computing because the logic circuits are unified in the memory units. We investigated two types of in-memory logic operations, namely, two-input logic circuits and multifunctional artificial synapses. These were realized in a dual-gate antiambipolar transistor (AAT) with a ReS2/WSe2 heterojunction, in which polystyrene with a zinc phthalocyanine core (ZnPc-PS4) was incorporated as a memory layer. Here, reconfigurability is a key concept for both types of device operations and was achieved by merging the Λ-shaped transfer curve of the AAT and the nonvolatile memory effect of ZnPc-PS4. First, we achieved electrically reconfigurable two-input logic circuits. Versatile logic circuits such as AND, OR, NAND, NOR, and XOR circuits were demonstrated by taking advantage of the Λ-shaped transfer curve of the dual-gate AAT. Importantly, the nonvolatile memory function provided the electrical switching of the individual circuits between AND/OR, NAND/NOR, and XOR/NAND circuits with constant input signals. Second, the memory effect was applied to multifunctional artificial synapses. The inhibitory/excitatory and long-term potentiation/depression synaptic operations were electrically reconfigured simply by controlling one parameter (readout voltage), making three distinct responses possible even with the same presynaptic signals. These findings provide hints that may lead to the realization of new in-memory computing architectures beyond the current von Neumann computers.

10.
Langmuir ; 29(24): 7266-70, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23298158

RESUMEN

We report on improved electrical conductivity in poly(3-hexylthiophene) (P3HT)/2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) composite nanowires grown using an anodized aluminum oxide (AAO) template. The electrical conductivity of individual nanowire measured by four-probe scanning tunneling microscopy shows that F4-TCNQ molecules are effectively doped into P3HT by capillary force. The resistivity is tuned in the 0.1-10 Ω cm range by changing the F4-TCNQ concentration from 10 to 0.1 wt % and is 2-4 orders of magnitude smaller than that of the corresponding P3HT/F4-TNCQ thin film composites. The AAO template-assisted synthesis approach thus appears to be effective for high chemical doping and for improving the electrical conductivity of the molecular wires.

11.
Langmuir ; 29(24): 7291-9, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23273225

RESUMEN

Two complementary examples of porphyrin nanoarchitectonics are presented. The fabrication of binary molecular monolayers using two different porphyrin molecules, tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)porphyrin (1) and tetrakis(4-pyridyl)porphyrin (2), by deposition in ultrahigh vacuum was demonstrated. Two unusual heteromolecular monolayer structures were observed, with one exhibiting good separation of 1 molecules within the monolayer. Also, a synthetic nanoarchitectonic approach was used to prepare self-assembled molecular nanowires at a mica substrate. The nanowires could be observed to grow using atomic force microscopy (AFM), and the network structures of the nanowires could be influenced by manipulation using the AFM probe tip.

12.
Chem Sci ; 14(4): 822-826, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36755703

RESUMEN

Herein, we present a simple design concept for a monomer that affords individually separated supramolecular polymer chains. Random introduction of alkyl chains with different lengths onto a monomer prevented its supramolecular polymers from bundling, permitting the preparation of concentrated solutions of the supramolecular polymer without gelation, precipitation, or crystallization. With such a solution in hand, we succeeded in fabricating self-standing films and threads consisting of supramolecular polymers.

13.
ACS Omega ; 8(16): 14641-14647, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37125116

RESUMEN

High-quality emission centers in two-dimensional materials are promising components for future photonic and optoelectronic applications. Carbon-enriched hexagonal boron nitride (hBN:C) layers host atom-like color-center (CC) defects with strong and robust photoemission up to room temperature. Placing the hBN:C layers on top of Ag triangle nanoparticles (NPs) accelerates the decay of the CC defects down to 46 ps from their reference bulk value of 350 ps. The ultrafast decay is achieved due to the efficient excitation of the plasmon modes of the Ag NPs by the near field of the CCs. Simulations of the CC/Ag NP interaction show that higher Purcell values are expected, although the measured decay of the CCs is limited by the instrument response. The influence of the NP thickness on the Purcell factor of the CCs is analyzed. The ultrafast operation of the CCs in hBN:C layers paves the way for their use in demanding applications, such as single-photon emitters and quantum devices.

14.
Adv Mater ; 34(30): e2201277, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35637610

RESUMEN

Organic antiambipolar transistors (AATs) have partially overlapped p-n junctions. At room temperature, this p-n junction induces a negative differential transconductance in an AAT. However, the detailed carrier-transport mechanism remains unclear. Herein, an operando photoemission electron microscopy is used to tackle this issue owing to the technique's ability to visualize conductive electrons in real time during transistor operation. Notably, it is observed that when the AAT is on, a depletion layer forms at the lateral p-n junction. The visualized depletion layer shows that both p- and n-type channels have pinch-off states in the gate voltage range when the AAT is in on state. The steep potential gradient at the lateral p-n interface enhances the electron conduction from n-type to p-type semiconductor. Another significant finding is that most electrons are considered to recombine with the accumulated holes in the p-type semiconductor, affording the reduction of photoemission intensity by ≈80%. This technique provides a thorough understanding of carrier transport in AATs, further improving the device performance.

15.
Adv Mater ; 34(15): e2109491, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35146811

RESUMEN

Electrically reconfigurable organic logic circuits are promising candidates for realizing new computation architectures, such as artificial intelligence and neuromorphic devices. In this study, multiple logic gate operations are attained based on a dual-gate organic antiambipolar transistor (DG-OAAT). The transistor exhibits a Λ-shaped transfer curve, namely, a negative differential transconductance at room temperature. It is important to note that the peak voltage of the drain current is precisely tuned by three input signals: bottom-gate, top-gate, and drain voltages. This distinctive feature enables multiple logic gate operations with "only a single DG-OAAT," which are not obtainable in conventional transistors. Five logic gate operations, which correspond to AND, OR, NAND, NOR, and XOR, are demonstrated by adjusting the bottom-gate and top-gate voltages. Moreover, varying the drain voltage makes it possible to reversibly switch two logic gates, e.g., NAND/NOR and OR/XOR. In addition, the DG-OAATs show a high degree of stability and reliability. The logic gate operations are observed even months later. The hysteresis in the transfer curves is also negligible. Thus, the device concept is promising for realizing multifunctional logic circuits with a simple transistor configuration. Hence, these findings are expected to surpass the current limitations in complementary metal-oxide-semiconductor devices.

16.
Opt Express ; 19(22): 22258-67, 2011 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-22109068

RESUMEN

Light propagation is simulated through coupled-resonator optical waveguides (CROWs) composed of seven transparent polystyrene microspheres, including micro-joints formed between the spheres. In nanojet-induced mode (NIM) light propagation, the micro-joints increased the optical coupling between microspheres drastically, and the light confinement by individual microspheres weakened as the micro-joint diameter increases. These results suggest that we can control NIM light propagation by changing the micro-joint diameter; this amounts to a nanojet throttle valve.

17.
Phys Chem Chem Phys ; 13(10): 4220-3, 2011 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-21283906

RESUMEN

We present a route to change the "compositional" order of highly crystalline binary layers comprising diindenoperylene and copper-phthalocyanines from two- to one-dimensional periodicity. This is achieved by exchanging fluorine with hydrogen atoms in the phthalocyanines, thereby reducing the C-F···H-C interactions and allowing the interplay of long-range electrostatic interactions in mesoscopic phases. Linear patterns are thus obtained, whose periodicity can be additionally tuned by an appropriate stoichiometry of the components.

18.
Phys Chem Chem Phys ; 13(11): 4868-76, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21225075

RESUMEN

Nanotubes of a pentacene derivative, 6,13-bis(1-n-dodecyl)-[a,c,l,n]-tetrabenzo-5,6,7,12,13,14-hexaazapentacene, have been prepared by a hierarchical self-assembly mechanism. The oligoazaacenes 1-3, referred to as pyrazinacenes due to their structures of linearly fused pyrazine heterocycles, can also be considered as two azatriphenylenes fused through a reduced pyrazine ring. Dissolution of 6,13-bis(1-n-dodecyl)-[a,c,l,n]-tetrabenzo-5,6,7,12,13,14-hexaaza pentacene in nearly boiling toluene followed by standing of the solution at room temperature yields self-assembled (sa) pyrazinacene (Pa) nanotubes (NT's), or sa-PaNTs. Self-assembled-PaNTs are formed after initial aggregation of the pyrazinacene giving a 130-nm-wide 2-dimensional tape followed by helical twisting of this tape into a hollow cylindrical form of 150-200 nm diameter which can exceed 10 µm in length. The morphologies of the tape and nanotube structures were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD) and electron absorption spectroscopy (UV/Vis). The latter indicates that the tubes may be formed by chromophore J-aggregation. Also, high resolution TEM of the tubes reveals that they can be composed of several tapes while powder X-ray diffraction revealed the lamellar structure of the tapes composing the tubes.

19.
J Nanosci Nanotechnol ; 11(6): 4888-92, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21770118

RESUMEN

Heteromolecular layers consisting of quaterrylene (QT) and terrylene-3,4,11,12-tetracarboximide (TTCDI-C12) were prepared on SiO2 surfaces and the electronic energy level alignment at TTCDI-C12/QT interface was examined. TTCDI-C12 layers were grown in nearly perpendicular orientation on QT layers by an ultraslow deposition technique, thereby achieving formation of a well-defined TTCDI-C12/QT interface. Atomic force microscopy (AFM) measurements ensured excellent surface flatness of each layer, surface roughnesses of which were comparable to that of pristine SiO2. Energy level alignment at the heteromolecular interface was evaluated by using ultraviolet photoelectron spectroscopy (UPS) and optical absorption measurements. No shift in energy level was served at the heteromolecular interface, indicating that charge transfer does not occur and a dipole moment is not formed at the well-defined TTCDI-C12/QT interface.

20.
Nanoscale ; 13(9): 4978-4984, 2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33634301

RESUMEN

We examined the modified electronic structure and single-carrier transport of individual hybrid core-shell metal-semiconductor Au-ZnS quantum dots (QDs) using a scanning tunnelling microscope. Nearly monodisperse ultra-small QDs are achieved by a facile wet chemical route. The exact energy structures are evaluated by scanning tunnelling spectroscopy (STS) measurements at 300 mK for the individual nanoobjects starting from the main building block Au nanocrystals (NCs) to the final Au-ZnS QDs. The study divulges the evolution of the energy structure and the charge transport from the single metallic building block core to the core-shell metal-semiconductor QDs. Furthermore, we successfully determined the contributions related to the quantum-confinement-induced excitonic band structure of the ZnS nano-shell and the charging energy of the system by applying a semi-empirical approach considering a double barrier tunnel junction (DBTJ) arrangement. We detect strong conductance peaks in Au-ZnS QDs due to the overlapping of the energy structure of the Au nano-core and the discrete energy states of the semiconductor ZnS nano-shell. Our findings will help in understanding the electronic properties of metal-semiconductor QDs. The outcomes therefore have the potential to fabricate tailored metal-semiconductor QDs for single-electron devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA