Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nano Lett ; 24(1): 319-325, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38147350

RESUMEN

Silicon T centers present the promising possibility of generating optically active spin qubits in an all-silicon device. However, these color centers exhibit long excited state lifetimes and a low Debye-Waller factor, making them dim emitters with low efficiency into the zero-phonon line. Nanophotonic cavities can solve this problem by enhancing radiative emission into the zero-phonon line through the Purcell effect. In this work, we demonstrate cavity-enhanced emission from a single T center in a nanophotonic cavity. We achieve a 2 order of magnitude increase in the brightness of the zero-phonon line relative to waveguide-coupled emitters, a 23% collection efficiency from emitter to fiber, and an overall emission efficiency into the zero-phonon line of 63.4%. We also observe a lifetime enhancement of 5, corresponding to a Purcell factor exceeding 18 when correcting for the emission to the phonon sideband. These results pave the way toward efficient spin-photon interfaces in silicon photonics.

2.
Nano Lett ; 23(5): 1781-1786, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36847503

RESUMEN

Noise spectroscopy elucidates the fundamental noise sources in spin systems, thereby serving as an essential tool toward developing spin qubits with long coherence times for quantum information processing, communication, and sensing. But existing techniques for noise spectroscopy that rely on microwave fields become infeasible when the microwave power is too weak to generate Rabi rotations of the spin. Here, we demonstrate an alternative all-optical approach to performing noise spectroscopy. Our approach utilizes coherent Raman rotations of the spin state with controlled timing and phase to implement Carr-Purcell-Meiboom-Gill pulse sequences. Analyzing the spin dynamics under these sequences enables us to extract the noise spectrum of a dense ensemble of nuclear spins interacting with a single spin in a quantum dot, which has thus far been modeled only theoretically. By providing spectral bandwidths of over 100 MHz, our approach enables studies of spin dynamics and decoherence for a broad range of solid-state spin qubits.

3.
Opt Express ; 31(23): 37574-37582, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38017884

RESUMEN

The heterogeneous integration of silicon with III-V materials provides a way to overcome silicon's limited optical properties toward a broad range of photonic applications. Hybrid modes are a promising way to integrate such heterogeneous Si/III-V devices, but it remains unclear how to utilize these modes to achieve photonic crystal cavities. Herein, using 3D finite-difference time-domain simulations, we propose a hybrid Si-GaAs photonic crystal cavity design that operates at telecom wavelengths and can be fabricated without requiring careful alignment. The hybrid cavity consists of a patterned silicon waveguide that is coupled to a wider GaAs slab featuring InAs quantum dots. We show that by changing the width of the silicon cavity waveguide, we can engineer the hybrid modes and control the degree of coupling to the active material in the GaAs slab. This provides the ability to tune the cavity quality factor while balancing the device's optical gain and nonlinearity. With this design, we demonstrate cavity mode confinement in the GaAs slab without directly patterning it, enabling strong interaction with the embedded quantum dots for applications such as low-power-threshold lasing and optical bistability (156 nW and 18.1 µW, respectively). This heterogeneous integration of an active III-V material with silicon via a hybrid cavity design suggests a promising approach for achieving on-chip light generation and low-power nonlinear platforms.

4.
Nano Lett ; 22(19): 7959-7964, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36129824

RESUMEN

Optically active spin systems coupled to photonic cavities with high cooperativity can generate strong light-matter interactions, a key ingredient in quantum networks. However, obtaining high cooperativities for quantum information processing often involves the use of photonic crystal cavities that feature a poor optical access from the free space, especially to circularly polarized light required for the coherent control of the spin. Here, we demonstrate coupling with a cooperativity as high as 8 of an InAs/GaAs quantum dot to a fabricated bullseye cavity that provides nearly degenerate and Gaussian polarization modes for efficient optical accessing. We observe spontaneous emission lifetimes of the quantum dot as short as 80 ps (an ∼15 Purcell enhancement) and a ∼80% transparency of light reflected from the cavity. Leveraging the induced transparency for photon switching while coherently controlling the quantum dot spin could contribute to ongoing efforts of establishing quantum networks.


Asunto(s)
Puntos Cuánticos , Óptica y Fotónica , Fotones
5.
Nano Lett ; 22(23): 9457-9461, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36441911

RESUMEN

Radiative cascades emit correlated photon pairs, providing a pathway for the generation of entangled photons. The realization of a radiative cascade with impurity atoms in semiconductors, a leading platform for the generation of quantum light, would therefore provide a new avenue for the development of entangled photon pair sources. Here we demonstrate a radiative cascade from the decay of a biexciton at an impurity-atom complex in a ZnSe quantum well. The emitted photons show clear temporal correlations revealing the time-ordering of the cascade. Our result establishes impurity atoms in ZnSe as a potential platform for photonic quantum technologies using radiative cascades.

6.
Nano Lett ; 21(1): 323-329, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33338376

RESUMEN

Telecom-wavelength single photons are essential components for long-distance quantum networks. However, bright and pure single photon sources at telecom wavelengths remain challenging to achieve. Here, we demonstrate a bright telecom-wavelength single photon source based on a tapered nanobeam containing InAs/InP quantum dots. The tapered nanobeam enables directional and Gaussian-like far-field emission of the quantum dots. As a result, using above-band excitation we obtain an end-to-end brightness of 4.1 ± 0.1% and first-lens brightness of 27.0 ± 0.1% at the ∼1300 nm wavelength. Furthermore, we adopt quasi-resonant excitation to reduce both multiphoton emission and decoherence from unwanted charge carriers. As a result, we achieve a coherence time of 523 ± 16 ps and postselected Hong-Ou-Mandel visibility of 0.91 ± 0.09 along with a comparable first-lens brightness of 21.0 ± 0.1%. These results represent a major step toward a practical fiber-based single photon source at telecom wavelengths for long-distance quantum networks.

7.
Opt Express ; 29(21): 33144-33154, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34809132

RESUMEN

Ultrathin optical limiters are needed to protect light sensitive components in miniaturized optical systems. However, it has proven challenging to achieve a sufficiently low optical limiting threshold. In this work, we theoretically show that an ultrathin optical limiter with low threshold intensity can be realized using a nonlinear zone plate. The zone plate is embedded with nonlinear saturable absorbing materials that allow the device to focus low intensity light, while high intensity light is transmitted as a plane wave without a focal spot. Based on this proposed mechanism, we use the finite-difference time-domain method to computationally design a zone plate embedded with InAs quantum dots as the saturable absorbing material. The device has a thickness of just 0.5 µm and exhibits good optical limiting behavior with a threshold intensity as low as 0.45 kW/cm2, which is several orders of magnitude lower than bulk limiter counterparts based on a similar mechanism, and also performs favorably compared to current ultrathin flat-optics-based optical limiters. This design can be optimized for different operating wavelengths and threshold intensities by using different saturable absorbing materials. Additionally, the diameter and focal length of the nonlinear zone plate can be easily adjusted to fit different systems and applications. Due to its flexible design, low power threshold, and ultrathin thickness, this optical limiting concept may be promising for application in miniaturized optical systems.

8.
Nature ; 578(7794): 219-220, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32051596
9.
Nano Lett ; 20(1): 741-747, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31855433

RESUMEN

Rare-earth ion ensembles doped in single crystals are a promising materials system with widespread applications in optical signal processing, lasing, and quantum information processing. Incorporating rare-earth ions into integrated photonic devices could enable compact lasers and modulators, as well as on-chip optical quantum memories for classical and quantum optical applications. To this end, a thin film single crystalline wafer structure that is compatible with planar fabrication of integrated photonic devices would be highly desirable. However, incorporating rare-earth ions into a thin film form-factor while preserving their optical properties has proven challenging. We demonstrate an integrated photonic platform for rare-earth ions doped in a single crystalline thin film lithium niobate on insulator. The thin film is composed of lithium niobate doped with Tm3+. The ions in the thin film exhibit optical lifetimes identical to those measured in bulk crystals. We show narrow spectral holes in a thin film waveguide that require up to 2 orders of magnitude lower power to generate than previously reported bulk waveguides. Our results pave the way for scalable on-chip lasers, optical signal processing devices, and integrated optical quantum memories.

10.
Appl Opt ; 59(20): 5870-5880, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32672729

RESUMEN

Using laser excitation, expression microdissection (xMD) can selectively heat cancer cells targeted via immunohistochemical staining to enable their selective retrieval from tumor tissue samples, thus reducing misdiagnoses caused by contamination of noncancerous cells. Several theoretical models have been validated for the photothermal effect in highly light absorbing and scattering media. However, these models are not generally applicable to the physics behind the process of xMD. In this study, we propose a thermal model that can analyze the transient temperature distribution and heat melt zone in an xMD sample medium composed of a thermoplastic film and a tumor tissue sample sandwiched between two glass slides. Furthermore, we experimentally examined the model using an ink layer with controllable optical properties to serve as a microscale-thin, tissue-mimicking phantom and found the experimentally measured film temperature is in good agreement with the model predictions. The validated model can help researchers to optimize cell retrieval by xMD for improved diagnostics of cancer and other diseases.


Asunto(s)
Terapia por Láser/métodos , Microdisección/métodos , Modelos Teóricos , Neoplasias/cirugía , Fantasmas de Imagen , Calor , Humanos , Neoplasias/patología
11.
Nano Lett ; 19(10): 7072-7077, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31483668

RESUMEN

Charged quantum dots containing an electron or hole spin are bright solid-state qubits suitable for quantum networks and distributed quantum computing. Incorporating such quantum dot spin into a photonic crystal cavity creates a strong spin-photon interface in which the spin can control a photon by modulating the cavity reflection coefficient. However, previous demonstrations of such spin-photon interfaces have relied on quantum dots that are charged randomly by nearby impurities, leading to instability in the charge state, which causes poor contrast in the cavity reflectivity. Here we demonstrate a strong spin-photon interface using a quantum dot that is charged deterministically with a diode structure. By incorporating this actively charged quantum dot in a photonic crystal cavity, we achieve strong coupling between the cavity mode and the negatively charged state of the dot. Furthermore, by initializing the spin through optical pumping, we show strong spin-dependent modulation of the cavity reflectivity, corresponding to a cooperativity of 12. This spin-dependent reflectivity is important for mediating entanglement between spins using photons, as well as generating strong photon-photon interactions for applications in quantum networking and distributed quantum computing.

12.
Opt Express ; 27(15): 21367-21379, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31510216

RESUMEN

Chiral light-matter interactions can enable polarization to control the direction of light emission in a photonic device. Most realizations of chiral light-matter interactions require external magnetic fields to break time-reversal symmetry of the emitter. One way to eliminate this requirement is to utilize strong spin-orbit coupling present in transition metal dichalcogenides that exhibit a valley-dependent polarized emission. Such interactions were previously reported using plasmonic waveguides, but these structures exhibit short propagation lengths due to loss. Chiral dielectric structures exhibit much lower loss levels and could therefore solve this problem. We demonstrate chiral light-matter interactions using spin-valley states of transition metal dichalcogenide monolayers coupled to a dielectric waveguide. We use a photonic crystal glide-plane waveguide that exhibits chiral modes with high field intensity, coupled to monolayer WSe2. We show that the circularly polarized emission of the monolayer preferentially couples to one direction of the waveguide, with a directionality as high as 0.35, limited by the polarization purity of the bare monolayer emission. This system enables on-chip directional control of light and could provide new ways to control spin and valley degrees of freedom in a scalable photonic platform.

13.
Opt Express ; 27(12): 16882-16889, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31252907

RESUMEN

Integration of single-photon sources and detectors to silicon-based photonics opens the possibility of complex circuits for quantum information processing. In this work, we demonstrate integration of quantum dots with a silicon photonic add-drop filter for on-chip filtering and routing of telecom photons. A silicon microdisk resonator acts as a narrow filter that transfers the quantum dot emission and filters the background over a wide wavelength range. Moreover, by tuning the quantum dot emission wavelength over the resonance of the microdisk, we can control the transmission of the quantum dot emission to the drop and through channels of the add-drop filter. This result is a step toward the on-chip control of single photons using silicon photonics for applications in quantum information processing, such as linear optical quantum computation and boson sampling.

14.
Phys Rev Lett ; 123(15): 150503, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31702283

RESUMEN

Temporal multiplexing provides an efficient and scalable approach to realize a quantum random walk with photons that can exhibit topological properties. But two-dimensional time-multiplexed topological quantum walks studied so far have relied on generalizations of the Su-Shreiffer-Heeger model with no synthetic gauge field. In this work, we demonstrate a two-dimensional topological quantum random walk where the nontrivial topology is due to the presence of a synthetic gauge field. We show that the synthetic gauge field leads to the appearance of multiple band gaps and, consequently, a spatial confinement of the quantum walk distribution. Moreover, we demonstrate topological edge states at an interface between domains with opposite synthetic fields. Our results expand the range of Hamiltonians that can be simulated using photonic quantum walks.

15.
Nano Lett ; 18(8): 4734-4740, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-29966093

RESUMEN

Future scalable photonic quantum information processing relies on the ability of integrating multiple interacting quantum emitters into a single chip. Quantum dots provide ideal on-chip quantum light sources. However, achieving quantum interaction between multiple quantum dots on-a-chip is a challenging task due to the randomness in their frequency and position, requiring local tuning technique and long-range quantum interaction. Here, we demonstrate quantum interactions between separated two quantum dots on a nanophotonic waveguide. We achieve a photon-mediated long-range interaction by integrating the quantum dots to the same optical mode of a nanophotonic waveguide and overcome spectral mismatch by incorporating on-chip thermal tuners. We observe their quantum interactions of the form of super-radiant emission, where the two dots collectively emit faster than each dot individually. Creating super-radiant emission from integrated quantum emitters could enable compact chip-integrated photonic structures that exhibit long-range quantum interactions. Therefore, these results represent a major step toward establishing photonic quantum information processors composed of multiple interacting quantum emitters on a semiconductor chip.

16.
Nano Lett ; 17(11): 6564-6568, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28968114

RESUMEN

Coupling of an atom-like emitter to surface plasmons provides a path toward significant optical nonlinearity, which is essential in quantum information processing and quantum networks. A large coupling strength requires nanometer-scale positioning accuracy of the emitter near the surface of the plasmonic structure, which is challenging. We demonstrate the coupling of single localized defects in a tungsten diselenide (WSe2) monolayer self-aligned to the surface plasmon mode of a silver nanowire. The silver nanowire induces a strain gradient on the monolayer at the overlapping area, leading to the formation of localized defect emission sites that are intrinsically close to the surface plasmon. We measured an average coupling efficiency with a lower bound of 26% ± 11% from the emitter into the plasmonic mode of the silver nanowire. This technique offers a way to achieve efficient coupling between plasmonic structures and localized defects of two-dimensional semiconductors.

17.
Nano Lett ; 17(12): 7394-7400, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29131963

RESUMEN

Scalable quantum photonic systems require efficient single photon sources coupled to integrated photonic devices. Solid-state quantum emitters can generate single photons with high efficiency, while silicon photonic circuits can manipulate them in an integrated device structure. Combining these two material platforms could, therefore, significantly increase the complexity of integrated quantum photonic devices. Here, we demonstrate hybrid integration of solid-state quantum emitters to a silicon photonic device. We develop a pick-and-place technique that can position epitaxially grown InAs/InP quantum dots emitting at telecom wavelengths on a silicon photonic chip deterministically with nanoscale precision. We employ an adiabatic tapering approach to transfer the emission from the quantum dots to the waveguide with high efficiency. We also incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement. Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons.

18.
Nano Lett ; 16(11): 7061-7066, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27749076

RESUMEN

Interactions between solid-state quantum emitters and cavities are important for a broad range of applications in quantum communication, linear optical quantum computing, nonlinear photonics, and photonic quantum simulation. These applications often require combining many devices on a single chip with identical emission wavelengths in order to generate two-photon interference, the primary mechanism for achieving effective photon-photon interactions. Such integration remains extremely challenging due to inhomogeneous broadening and fabrication errors that randomize the resonant frequencies of both the emitters and cavities. In this Letter, we demonstrate two-photon interference from independent cavity-coupled emitters on the same chip, providing a potential solution to this long-standing problem. We overcome spectral mismatch between different cavities due to fabrication errors by depositing and locally evaporating a thin layer of condensed nitrogen. We integrate optical heaters to tune individual dots within each cavity to the same resonance with better than 3 µeV of precision. Combining these tuning methods, we demonstrate two-photon interference between two devices spaced by less than 15 µm on the same chip with a postselected visibility of 33%, which is limited by timing resolution of the detectors and background. These results pave the way to integrate multiple quantum light sources on the same chip to develop quantum photonic devices.

19.
Nano Lett ; 16(9): 5415-9, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27552289

RESUMEN

Single-emitter microscopy has emerged as a promising method of imaging nanostructures with nanoscale resolution. This technique uses the centroid position of an emitter's far-field radiation pattern to infer its position to a precision that is far below the diffraction limit. However, nanostructures composed of high-dielectric materials such as noble metals can distort the far-field radiation pattern. Previous work has shown that these distortions can significantly degrade the imaging of the local density of states in metallic nanowires using polarization-resolved imaging. But unlike nanowires, nanoparticles do not have a well-defined axis of symmetry, which makes polarization-resolved imaging difficult to apply. Nanoparticles also exhibit a more complex range of distortions, because in addition to introducing a high dielectric surface, they also act as efficient scatterers. Thus, the distortion effects of nanoparticles in single-emitter microscopy remains poorly understood. Here we demonstrate that metallic nanoparticles can significantly distort the accuracy of single-emitter imaging at distances exceeding 300 nm. We use a single quantum dot to probe both the magnitude and the direction of the metallic nanoparticle-induced imaging distortion and show that the diffraction spot of the quantum dot can shift by more than 35 nm. The centroid position of the emitter generally shifts away from the nanoparticle position, which is in contradiction to the conventional wisdom that the nanoparticle is a scattering object that will pull in the diffraction spot of the emitter toward its center. These results suggest that dielectric distortion of the emission pattern dominates over scattering. We also show that by monitoring the distortion of the quantum dot diffraction spot we can obtain high-resolution spatial images of the nanoparticle, providing a new method for performing highly precise, subdiffraction spatial imaging. These results provide a better understanding of the complex near-field coupling between emitters and nanostructures and open up new opportunities to perform super-resolution microscopy with higher accuracy.

20.
Nano Lett ; 15(3): 1481-6, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25654268

RESUMEN

Nitrogen vacancy (NV) color centers in diamond enable local magnetic field sensing with high sensitivity by optical detection of electron spin resonance (ESR). The integration of this capability with microfluidic technology has a broad range of applications in chemical and biological sensing. We demonstrate a method to perform localized magnetometry in a microfluidic device with a 48 nm spatial precision. The device manipulates individual magnetic particles in three dimensions using a combination of flow control and magnetic actuation. We map out the local field distribution of the magnetic particle by manipulating it in the vicinity of a single NV center and optically detecting the induced Zeeman shift with a magnetic field sensitivity of 17.5 µT Hz(-1/2). Our results enable accurate nanoscale mapping of the magnetic field distribution of a broad range of target objects in a microfluidic device.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA