Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
iScience ; 26(6): 106829, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37250784

RESUMEN

microRNA-132 (miR-132), a known neuronal regulator, is one of the most robustly downregulated microRNAs (miRNAs) in the brain of Alzheimer's disease (AD) patients. Increasing miR-132 in AD mouse brain ameliorates amyloid and Tau pathologies, and also restores adult hippocampal neurogenesis and memory deficits. However, the functional pleiotropy of miRNAs requires in-depth analysis of the effects of miR-132 supplementation before it can be moved forward for AD therapy. We employ here miR-132 loss- and gain-of-function approaches using single-cell transcriptomics, proteomics, and in silico AGO-CLIP datasets to identify molecular pathways targeted by miR-132 in mouse hippocampus. We find that miR-132 modulation significantly affects the transition of microglia from a disease-associated to a homeostatic cell state. We confirm the regulatory role of miR-132 in shifting microglial cell states using human microglial cultures derived from induced pluripotent stem cells.

2.
Mol Neurodegener ; 16(1): 76, 2021 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-34742333

RESUMEN

Multi-pathway approaches for the treatment of complex polygenic disorders are emerging as alternatives to classical monotarget therapies and microRNAs are of particular interest in that regard. MicroRNA research has come a long way from their initial discovery to the cumulative appreciation of their regulatory potential in healthy and diseased brain. However, systematic interrogation of putative therapeutic or toxic effects of microRNAs in (models of) Alzheimer's disease is currently missing and fundamental research findings are yet to be translated into clinical applications. Here, we review the literature to summarize the knowledge on microRNA regulation in Alzheimer's pathophysiology and to critically discuss whether and to what extent these increasing insights can be exploited for the development of microRNA-based therapeutics in the clinic.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/terapia , Encéfalo , Humanos , MicroARNs/genética
3.
Cell Stem Cell ; 28(10): 1805-1821.e8, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34033742

RESUMEN

Neural stem cells residing in the hippocampal neurogenic niche sustain lifelong neurogenesis in the adult brain. Adult hippocampal neurogenesis (AHN) is functionally linked to mnemonic and cognitive plasticity in humans and rodents. In Alzheimer's disease (AD), the process of generating new neurons at the hippocampal neurogenic niche is impeded, yet the mechanisms involved are unknown. Here we identify miR-132, one of the most consistently downregulated microRNAs in AD, as a potent regulator of AHN, exerting cell-autonomous proneurogenic effects in adult neural stem cells and their progeny. Using distinct AD mouse models, cultured human primary and established neural stem cells, and human patient material, we demonstrate that AHN is directly affected by AD pathology. miR-132 replacement in adult mouse AD hippocampus restores AHN and relevant memory deficits. Our findings corroborate the significance of AHN in mouse models of AD and reveal the possible therapeutic potential of targeting miR-132 in neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedad de Alzheimer/genética , Animales , Modelos Animales de Enfermedad , Hipocampo , Humanos , Trastornos de la Memoria/genética , Trastornos de la Memoria/terapia , Ratones , MicroARNs/genética , Neurogénesis
4.
Biomaterials ; 230: 119657, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31837821

RESUMEN

Direct nose-to-brain (N-to-B) delivery enables the rapid transport of drugs to the brain, while minimizing systemic exposure. The objective of this work was to engineer a nanocarrier intended to enhance N-to-B delivery of RNA and to explore its potential utility for the treatment of neurological disorders. Our approach involved the formation of electrostatically driven nanocomplexes between a hydrophobic derivative of octaarginine (r8), chemically conjugated with lauric acid (C12), and the RNA of interest. Subsequently, these cationic nanocomplexes were enveloped (enveloped nanocomplexes, ENCPs) with different protective polymers, i.e. polyethyleneglycol - polyglutamic acid (PEG-PGA) or hyaluronic acid (HA), intended to enhance their stability and mucodiffusion across the olfactory nasal mucosa. These rationally designed ENCPs were produced in bulk format and also using a microfluidics-based technique. This technique enabled the production of a scalable nanoformulation, exhibiting; (i) a unimodal size distribution with a tunable mean size, (ii) the capacity to highly associate (100%) and protect RNA from degradation, (iii) the ability to preserve its physicochemical properties in biorelevant media and prevent the premature RNA release. Moreover, in vitro cell culture studies showed the capacity of ENCPs to interact and be efficiently taken-up by CHO cells. Finally, in vivo experiments in a mouse model of Alzheimer's disease provided evidence of a statistically significant increase of a potentially therapeutic miRNA mimic in the hippocampus area and its further effect on two mRNA targets, following its intranasal administration. Overall, these findings stress the value of the rational design of nanocarriers towards overcoming the biological barriers associated to N-to-B RNA delivery and reveal their potential value as therapeutic strategies in Alzheimer's disease.


Asunto(s)
Nanopartículas , Enfermedades Neurodegenerativas , Administración Intranasal , Animales , Encéfalo , Cricetinae , Cricetulus , Sistemas de Liberación de Medicamentos , Ratones , Péptidos , Ácido Poliglutámico
5.
Oncotarget ; 9(26): 18224-18238, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29719601

RESUMEN

Intestinal disorders often occur in cancer patients, in association with body weight loss, and this alteration is commonly attributed to the chemotherapy. Here, using a mouse model of cancer cachexia induced by ectopic transplantation of C26 cancer cells, we discovered a profound alteration in the gut functions (gut permeability, epithelial turnover, gut immunity, microbial dysbiosis) independently of any chemotherapy. These alterations occurred independently of anorexia and were driven by interleukin 6. Gut dysfunction was found to be resistant to treatments with an anti-inflammatory bacterium (Faecalibacterium prausnitzii) or with gut peptides involved in intestinal cell renewal (teduglutide, a glucagon-like peptide 2 analogue). The translational value of our findings was evaluated in 152 colorectal and lung cancer patients with or without cachexia. The serum level of the lipopolysaccharide-binding protein, often presented as a reflection of the bacterial antigen load, was not only increased in cachectic mice and cancer patients, but also strongly correlated with the serum IL-6 level and predictive of death and cachexia occurrence in these patients. Altogether, our data highlight profound alterations of the intestinal homeostasis in cancer cachexia occurring independently of any chemotherapy and food intake reduction, with potential relevance in humans. In addition, we point out the lipopolysaccharide-binding protein as a new biomarker of cancer cachexia related to gut dysbiosis.

6.
Nutrients ; 9(6)2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28632181

RESUMEN

Aging predisposes to hepatic dysfunction and inflammation that can contribute to the development of non-alcoholic fatty liver disease. Spirulina, a cyanobacterium used as a food additive or food supplement, has been shown to impact immune function. We have tested the potential hepatoprotective effect of a Spirulina in aged mice and to determine whether these effects can be related to a modulation of the gut microbiota. Old mice have been fed a standard diet supplemented with or without 5% Spirulina for six weeks. Among several changes of gut microbiota composition, an increase in Roseburia and Lactobacillus proportions occurs upon Spirulina treatment. Interestingly, parameters related to the innate immunity are upregulated in the small intestine of Spirulina-treated mice. Furthermore, the supplementation with Spirulina reduces several hepatic inflammatory and oxidative stress markers that are upregulated in old mice versus young mice. We conclude that the oral administration of a Spirulina is able to modulate the gut microbiota and to activate the immune system in the gut, a mechanism that may be involved in the improvement of the hepatic inflammation in aged mice. Those data open the way to new therapeutic tools in the management of immune alterations in aging, based on gut microbe-host interactions.


Asunto(s)
Microbioma Gastrointestinal , Inflamación/prevención & control , Hepatopatías/prevención & control , Spirulina , Envejecimiento , Alimentación Animal , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Bacterias/clasificación , Biomarcadores , Dieta/veterinaria , Suplementos Dietéticos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Inmunidad Innata , Hepatopatías/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA