Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Allergy Clin Immunol ; 152(3): 610-621, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37271318

RESUMEN

BACKGROUND: Growing up on traditional European or US Amish dairy farms in close contact with cows and hay protects children against asthma, and airway administration of extracts from dust collected from cowsheds of those farms prevents allergic asthma in mice. OBJECTIVES: This study sought to begin identifying farm-derived asthma-protective agents. METHODS: Our work unfolded along 2 unbiased and independent but complementary discovery paths. Dust extracts (DEs) from protective and nonprotective farms (European and Amish cowsheds vs European sheep sheds) were analyzed by comparative nuclear magnetic resonance profiling and differential proteomics. Bioactivity-guided size fractionation focused on protective Amish cowshed DEs. Multiple in vitro and in vivo functional assays were used in both paths. Some of the proteins thus identified were characterized by in-solution and in-gel sodium dodecyl sulfate-polyacrylamide gel electrophoresis enzymatic digestion/peptide mapping followed by liquid chromatography/mass spectrometry. The cargo carried by these proteins was analyzed by untargeted liquid chromatography-high-resolution mass spectrometry. RESULTS: Twelve carrier proteins of animal and plant origin, including the bovine lipocalins Bos d 2 and odorant binding protein, were enriched in DEs from protective European cowsheds. A potent asthma-protective fraction of Amish cowshed DEs (≈0.5% of the total carbon content of unfractionated extracts) contained 7 animal and plant proteins, including Bos d 2 and odorant binding protein loaded with fatty acid metabolites from plants, bacteria, and fungi. CONCLUSIONS: Animals and plants from traditional farms produce proteins that transport hydrophobic microbial and plant metabolites. When delivered to mucosal surfaces, these agents might regulate airway responses.


Asunto(s)
Asma , Polvo , Femenino , Animales , Bovinos , Ratones , Ovinos , Granjas , Polvo/análisis , Asma/prevención & control , Alérgenos , Sistema Respiratorio
2.
Int J Med Microbiol ; 311(5): 151513, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34147944

RESUMEN

Sulfur metabolism and sulfur-containing metabolites play an important role in the human digestive system, and sulfur compounds and pathways are associated with inflammatory bowel diseases (IBD). In fact, cysteine metabolism results in the production of taurine and sulfate, and gut microbes catabolize them into hydrogen sulfide, a signaling molecule with various biological functions. Besides metabolites originating from sulfur metabolism, several other sulfur-containing metabolites of different classes were detected in human feces, consisting of non-volatile and volatile compounds. Sulfated steroids and bile acids such as taurine-conjugated bile acids are the major classes along with sulfur amino acids and sulfur-containing peptides. Indeed, sulfur-containing metabolites were described in stool samples from healthy subjects, patients suffering from colorectal cancer or IBD. In metabolomics-driven studies, around 50 known sulfur-containing metabolites were linked to IBD. Taurine, taurocholic acid, taurochenodeoxycholic acid, methionine, methanethiol and hydrogen sulfide were regularly reported in IBD studies, and most of them were elevated in stool samples from IBD patients. We summarized from this review that there is strong interplay between perturbed gut microbiota in IBD, and the consistently higher abundance of sulfur-containing metabolites, which potentially represent substrates for sulfidogenic bacteria such as Bilophila or Escherichia and promote their growth. These bacteria might shift their metabolism towards the degradation of taurine and cysteine and therefore to a higher hydrogen sulfide production.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Heces , Humanos , Metaboloma , Azufre
3.
Gastroenterology ; 157(5): 1279-1292.e11, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31326413

RESUMEN

BACKGROUND & AIMS: Altered interactions between the mucosal immune system and intestinal microbiota contribute to pathogenesis of inflammatory bowel diseases (IBD). It is not clear how inhibitors of cytokines, such as antagonists of tumor necrosis factor (anti-TNF), affect the intestinal microbiome. We investigated the effects of anti-TNF agents on gut microbe community structure and function in a longitudinal 2-step study of patients with IBD. We correlated our findings with outcomes of treatment and investigated patterns of metabolites in fecal samples before and after anti-TNF therapy. METHODS: We performed a prospective study of 2 cohorts of patients in Germany; the discovery cohort comprised 12 patients with IBD, 17 patients with rheumatic disease, and 19 healthy individuals (controls); fecal samples were collected at baseline and 2, 6, and 30 weeks after induction of anti-TNF therapy. The validation cohort comprised 23 patients with IBD treated with anti-TNF or vedolizumab (anti-α4ß7 integrin) and 99 healthy controls; fecal samples were collected at baseline and at weeks 2, 6, and 14. Fecal microbiota were analyzed by V3-V4 16S ribosomal RNA gene amplicon sequencing. Clinical response and remission were determined by clinical disease activity scores. Metabolic network reconstruction and associated fecal metabolite level inference was performed in silico using the AGORA (Assembly of Gut Organisms through Reconstruction and Analysis) resource. Metabolomic analyses of fecal samples from a subset of patients were performed to validate metabolites associated with treatment outcomes. RESULTS: Anti-TNF therapy shifted the diversity of fecal microbiota in patients with IBD, but not with rheumatic disease, toward that of controls. Across timepoints, diversity indices did not vary significantly between patients with IBD who did or did not achieve clinical remission after therapy. In contrast, in silico modeling of metabolic interactions between gut microbes found metabolite exchange to be significantly reduced at baseline in fecal samples from patients with IBD and to be associated with later clinical remission. Predicted levels of butyrate and substrates involved in butyrate synthesis (ethanol or acetaldehyde) were significantly associated with clinical remission following anti-TNF therapy, verified by fecal metabolomic analyses. CONCLUSIONS: Metabolic network reconstruction and assessment of metabolic profiles of fecal samples might be used to identify patients with IBD likely to achieve clinical remission following anti-TNF therapy and increase our understanding of the heterogeneity of IBD.


Asunto(s)
Antirreumáticos/uso terapéutico , Bacterias/metabolismo , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Intestinos/efectos de los fármacos , Enfermedades Reumáticas/tratamiento farmacológico , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Antirreumáticos/efectos adversos , Bacterias/genética , Estudios de Casos y Controles , Heces/microbiología , Humanos , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/microbiología , Intestinos/inmunología , Intestinos/microbiología , Metabolómica , Selección de Paciente , Valor Predictivo de las Pruebas , Estudios Prospectivos , Inducción de Remisión , Enfermedades Reumáticas/diagnóstico , Enfermedades Reumáticas/inmunología , Enfermedades Reumáticas/microbiología , Ribotipificación , Factores de Tiempo , Resultado del Tratamiento , Inhibidores del Factor de Necrosis Tumoral/efectos adversos , Factor de Necrosis Tumoral alfa/inmunología
4.
Gut ; 66(5): 863-871, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-26848182

RESUMEN

OBJECTIVE: Iron deficiency is a common complication in patients with IBD and oral iron therapy is suggested to exacerbate IBD symptoms. We performed an open-labelled clinical trial to compare the effects of per oral (PO) versus intravenous (IV) iron replacement therapy (IRT). DESIGN: The study population included patients with Crohn's disease (CD; N=31), UC (N=22) and control subjects with iron deficiency (non-inflamed, NI=19). After randomisation, participants received iron sulfate (PO) or iron sucrose (IV) over 3 months. Clinical parameters, faecal bacterial communities and metabolomes were assessed before and after intervention. RESULTS: Both PO and IV treatments ameliorated iron deficiency, but higher ferritin levels were observed with IV. Changes in disease activity were independent of iron treatment types. Faecal samples in IBD were characterised by marked interindividual differences, lower phylotype richness and proportions of Clostridiales. Metabolite analysis also showed separation of both UC and CD from control anaemic participants. Major shifts in bacterial diversity occurred in approximately half of all participants after IRT, but patients with CD were most susceptible. Despite individual-specific changes in phylotypes due to IRT, PO treatment was associated with decreased abundances of operational taxonomic units assigned to the species Faecalibacterium prausnitzii, Ruminococcus bromii, Dorea sp. and Collinsella aerofaciens. Clear IV-specific and PO-specific fingerprints were evident at the level of metabolomes, with changes affecting cholesterol-derived host substrates. CONCLUSIONS: Shifts in gut bacterial diversity and composition associated with iron treatment are pronounced in IBD participants. Despite similar clinical outcome, oral administration differentially affects bacterial phylotypes and faecal metabolites compared with IV therapy. TRIAL REGISTRATION NUMBER: clinicaltrial.gov (NCT01067547).


Asunto(s)
Anemia Ferropénica/tratamiento farmacológico , Colitis Ulcerosa/microbiología , Enfermedad de Crohn/microbiología , Compuestos Férricos/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Ácido Glucárico/administración & dosificación , Hematínicos/administración & dosificación , Metaboloma/efectos de los fármacos , Administración Intravenosa , Administración Oral , Anemia Ferropénica/etiología , Colitis Ulcerosa/complicaciones , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/complicaciones , Enfermedad de Crohn/metabolismo , Heces/química , Heces/microbiología , Sacarato de Óxido Férrico , Ferritinas/sangre , Humanos , Deficiencias de Hierro , Calidad de Vida , ARN Ribosómico 16S/análisis
5.
Int J Med Microbiol ; 306(5): 266-279, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27012595

RESUMEN

The review highlights the role of metabolomics in studying human gut microbial metabolism. Microbial communities in our gut exert a multitude of functions with huge impact on human health and disease. Within the meta-omics discipline, gut microbiome is studied by (meta)genomics, (meta)transcriptomics, (meta)proteomics and metabolomics. The goal of metabolomics research applied to fecal samples is to perform their metabolic profiling, to quantify compounds and classes of interest, to characterize small molecules produced by gut microbes. Nuclear magnetic resonance spectroscopy and mass spectrometry are main technologies that are applied in fecal metabolomics. Metabolomics studies have been increasingly used in gut microbiota related research regarding health and disease with main focus on understanding inflammatory bowel diseases. The elucidated metabolites in this field are summarized in this review. We also addressed the main challenges of metabolomics in current and future gut microbiota research. The first challenge reflects the need of adequate analytical tools and pipelines, including sample handling, selection of appropriate equipment, and statistical evaluation to enable meaningful biological interpretation. The second challenge is related to the choice of the right animal model for studies on gut microbiota. We exemplified this using NMR spectroscopy for the investigation of cross-species comparison of fecal metabolite profiles. Finally, we present the problem of variability of human gut microbiota and metabolome that has important consequences on the concepts of personalized nutrition and medicine.


Asunto(s)
Heces/química , Heces/microbiología , Microbioma Gastrointestinal , Metabolómica/métodos , Microbiota , Animales , Modelos Animales de Enfermedad , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Reproducibilidad de los Resultados
6.
Chem Res Toxicol ; 28(7): 1434-42, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-26024413

RESUMEN

Occupational and environmental exposure to increased concentrations of manganese (Mn) can lead to an accumulation of this element in the brain. The consequence is an irreversible damage of dopaminergic neurons leading to a disease called manganism with a clinical presentation similar to the one observed in Parkinson's disease. Human as well as animal studies indicate that Mn is mainly bound to low molecular mass (LMM) compounds such as Mn-citrate when crossing neural barriers. The shift toward LMM compounds might already take place in serum due to elevated Mn concentrations in the body. In this study, we investigated Mn-species pattern in serum in two different animal models by size exclusion chromatography-inductively coupled plasma mass spectrometry (SEC-ICP-MS). A subchronic feeding of rats with elevated levels of Mn led to an increase in LMM compounds, mainly Mn-citrate and Mn bound to amino acids. In addition, a single i.v. injection of Mn showed an increase in Mn-transferrin and Mn bound to amino acids 1 h after injection, while species values were more or less rebalanced 4 days after the injection. Results from Mn-speciation were correlated to the brain metabolome determined by means of electrospray ionization ion cyclotron resonance Fourier transform mass spectrometry (ESI-ICR/FT-MS). The powerful combination of Mn-speciation in serum with metabolomics of the brain underlined the need for Mn-speciation in exposure scenarios instead of the determination of whole Mn concentrations in blood. The progress of Mn-induced neuronal injury might therefore be assessed on the basis of known serum Mn-species.


Asunto(s)
Encéfalo/metabolismo , Manganeso/sangre , Espectrometría de Masa por Ionización de Electrospray , Animales , Barrera Hematoencefálica/metabolismo , Cromatografía en Gel , Iones/química , Modelos Lineales , Masculino , Manganeso/metabolismo , Metabolómica , Ratas , Ratas Sprague-Dawley , Espectroscopía Infrarroja por Transformada de Fourier
7.
J Proteome Res ; 13(10): 4220-31, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-24991707

RESUMEN

A metabolic disorder such as Type-2 Diabetes mellitus (T2DM) is a complex disease induced by genetic, environmental, and nutritional factors. The db/db mouse model, bearing a nonfunctional leptin receptor, is widely used to investigate the pathophysiology of T2DM. Fecal extracts of db/db and wild-type littermates were studied to unravel a broad spectrum of new and relevant metabolites related to T2DM as proxies of the interplay of gut microbiome and murine metabolomes. The nontargeted metabolomics approach consists of an integrated analytical concept of high-resolution mass spectrometry FT-ICR-MS, followed by UPLC-TOF-MS/MS experiments. We demonstrate that a metabolic disorder such as T2DM affects the gastrointestinal tract environment, thereby influencing different metabolic pathways and their respective metabolites in diabetic mice. Fatty acids, bile acids concerning cholic and deoxycholic acid, and steroid metabolism were highly discriminative comparing fecal meta-metabolomes of wt and db/db mice. Furthermore, sulfur-(S)-containing metabolites including N-acyl taurines were altered in diabetic mice, enabling us to focus on S-containing metabolites, especially the sulfate and taurine conjugates of bile and fatty acids. Different sulfate containing bile acids including sulfocholic acid, oxocholic acid sulfate, taurocholic acid sulfate, and cyprinol sulfate were significantly altered in diabetic mice. Moreover, we identified 12 new sulfate and taurine conjugates of hydroxylated fatty acids with significant importance in T2DM metabolism in db/db mice.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Heces , Metabolómica , Azufre/metabolismo , Animales , Estudios de Casos y Controles , Ratones , Espectrometría de Masa por Ionización de Electrospray , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría de Masas en Tándem
8.
Artículo en Inglés | MEDLINE | ID: mdl-38901159

RESUMEN

Lipidomics is focusing on the screening of lipid species in complex mixtures using mass spectrometry-based approaches. In this work, we aim to enhance the intestinal lipidome coverage within the Oligo-Mouse-Microbiota (OMM12) colonized mouse model by testing eight mobile phase conditions on five reversed-phase columns. Our selected mobile phase modifiers included two ammonium salts, two concentrations, and the addition of respective acids at 0.1 %. We compared two columns with hybrid surface technology, two with ethylene bridged hybrid technology and one with core-shell particles. Best performance was attained for standards and intestinal lipidome, using either ammonium formate or acetate in ESI(+) or ammonium acetate in ESI(-) for all column technologies. Notably, a concentration of 5 mM ammonium salt showed optimal results for both modes, while the addition of acids had a negligible effect on lipid ionization efficiency. The HST BEH C18 column improved peak width and tailing factor parameters compared to other technologies. We achieved the highest lipid count in colon and ileum content, including ceramides, phosphatidylethanolamines and phosphatidylcholines, when using 5 mM ammonium acetate in ESI(-). Conversely, in ESI(+) 5 mM ammonium formate demonstrated superior coverage for diacylglycerols and triacylglycerols.


Asunto(s)
Vida Libre de Gérmenes , Lipidómica , Lípidos , Animales , Ratones , Cromatografía Líquida de Alta Presión/métodos , Lipidómica/métodos , Lípidos/análisis , Lípidos/química , Espectrometría de Masas/métodos , Microbioma Gastrointestinal , Intestinos/química
9.
Microbiome ; 12(1): 1, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38167150

RESUMEN

BACKGROUND: The rhizosheath, a cohesive soil layer firmly adhering to plant roots, plays a vital role in facilitating water and mineral uptake. In pearl millet, rhizosheath formation is genetically controlled and influenced by root exudates. Here, we investigated the impact of root exudates on the microbiota composition, interactions, and assembly processes, and rhizosheath structure in pearl millet using four distinct lines with contrasting soil aggregation abilities. RESULTS: Utilizing 16S rRNA gene and ITS metabarcoding for microbiota profiling, coupled with FTICR-MS metabonomic analysis of metabolite composition in distinct plant compartments and root exudates, we revealed substantial disparities in microbial diversity and interaction networks. The ß-NTI analysis highlighted bacterial rhizosphere turnover driven primarily by deterministic processes, showcasing prevalent homogeneous selection in root tissue (RT) and root-adhering soil (RAS). Conversely, fungal communities were more influenced by stochastic processes. In bulk soil assembly, a combination of deterministic and stochastic mechanisms shapes composition, with deterministic factors exerting a more pronounced role. Metabolic profiles across shoots, RT, and RAS in different pearl millet lines mirrored their soil aggregation levels, emphasizing the impact of inherent plant traits on microbiota composition and unique metabolic profiles in RT and exudates. Notably, exclusive presence of antimicrobial compounds, including DIMBOA and H-DIMBOA, emerged in root exudates and RT of low aggregation lines. CONCLUSIONS: This research underscores the pivotal influence of root exudates in shaping the root-associated microbiota composition across pearl millet lines, entwined with their soil aggregation capacities. These findings underscore the interconnectedness of root exudates and microbiota, which jointly shape rhizosheath structure, deepening insights into soil-plant-microbe interactions and ecological processes shaping rhizosphere microbial communities. Deciphering plant-microbe interactions and their contribution to soil aggregation and microbiota dynamics holds promise for the advancement of sustainable agricultural strategies. Video Abstract.


Asunto(s)
Microbiota , Pennisetum , Pennisetum/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Raíces de Plantas/microbiología , Suelo/química , Plantas/microbiología , Exudados y Transudados , Microbiología del Suelo , Rizosfera
10.
Sci Rep ; 11(1): 13294, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34168180

RESUMEN

Peptide glycation is an important, yet poorly understood reaction not only found in food but also in biological systems. The enormous heterogeneity of peptides and the complexity of glycation reactions impeded large-scale analysis of peptide derived glycation products and to understand both the contributing factors and how this affects the biological activity of peptides. Analyzing time-resolved Amadori product formation, we here explored site-specific glycation for 264 peptides. Intensity profiling together with in-depth computational sequence deconvolution resolved differences in peptide glycation based on microheterogeneity and revealed particularly reactive peptide collectives. These peptides feature potentially important sequence patterns that appear in several established bio- and sensory-active peptides from independent sources, which suggests that our approach serves system-wide applicability. We generated a pattern peptide map and propose that in peptide glycation the herein identified molecular checkpoints can be used as indication of sequence reactivity.


Asunto(s)
Monosacáridos/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Cromatografía de Gases y Espectrometría de Masas , Humanos , Espectrometría de Masas , Péptidos/genética
11.
Front Mol Biosci ; 8: 660456, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124150

RESUMEN

The early-life metabolome of the intestinal tract is dynamically influenced by colonization of gut microbiota which in turn is affected by nutrition, i.e. breast milk or formula. A detailed examination of fecal metabolites was performed to investigate the effect of probiotics in formula compared to control formula and breast milk within the first months of life in healthy neonates. A broad metabolomics approach was conceptualized to describe fecal polar and semi-polar metabolites affected by feeding type within the first year of life. Fecal metabolomes were clearly distinct between formula- and breastfed infants, mainly originating from diet and microbial metabolism. Unsaturated fatty acids and human milk oligosaccharides were increased in breastfed, whereas Maillard products were found in feces of formula-fed children. Altered microbial metabolism was represented by bile acids and aromatic amino acid metabolites. Elevated levels of sulfated bile acids were detected in stool samples of breastfed infants, whereas secondary bile acids were increased in formula-fed infants. Microbial co-metabolism was supported by significant correlation between chenodeoxycholic or lithocholic acid and members of Clostridia. Fecal metabolites showed strong inter- and intra-individual behavior with features uniquely present in certain infants and at specific time points. Nevertheless, metabolite profiles converged at the end of the first year, coinciding with solid food introduction.

12.
Cell Metab ; 33(12): 2355-2366.e8, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34847376

RESUMEN

Hexokinases (HK) catalyze the first step of glycolysis limiting its pace. HK2 is highly expressed in gut epithelium, contributes to immune responses, and is upregulated during inflammation. We examined the microbial regulation of HK2 and its impact on inflammation using mice lacking HK2 in intestinal epithelial cells (Hk2ΔIEC). Hk2ΔIEC mice were less susceptible to acute colitis. Analyzing the epithelial transcriptome from Hk2ΔIEC mice during colitis and using HK2-deficient intestinal organoids and Caco-2 cells revealed reduced mitochondrial respiration and epithelial cell death in the absence of HK2. The microbiota strongly regulated HK2 expression and activity. The microbially derived short-chain fatty acid (SCFA) butyrate repressed HK2 expression via histone deacetylase 8 (HDAC8) and reduced mitochondrial respiration in wild-type but not in HK2-deficient Caco-2 cells. Butyrate supplementation protected wild-type but not Hk2ΔIEC mice from colitis. Our findings define a mechanism how butyrate promotes intestinal homeostasis and suggest targeted HK2-inhibition as therapeutic avenue for inflammation.


Asunto(s)
Colitis , Hexoquinasa , Animales , Células CACO-2 , Muerte Celular/fisiología , Colitis/metabolismo , Colitis/microbiología , Células Epiteliales/metabolismo , Hexoquinasa/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Ratones , Mitocondrias/metabolismo , Proteínas Represoras/metabolismo
13.
Gut Microbes ; 12(1): 1-17, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33079623

RESUMEN

Although it is generally accepted that dietary fiber is health promoting, the underlying immunological and molecular mechanisms are not well defined, especially with respect to cellulose, the most ubiquitous dietary fiber. Here, the impact of dietary cellulose on intestinal microbiota, immune responses and gene expression in health and disease was examined. Lack of dietary cellulose disrupted the age-related diversification of the intestinal microbiota, which subsequently remained in an immature state. Interestingly, one of the most affected microbial genera was Alistipes which is equipped with enzymes to degrade cellulose. Absence of cellulose changed the microbial metabolome, skewed intestinal immune responses toward inflammation, altered the gene expression of intestinal epithelial cells and mice showed increased sensitivity to colitis induction. In contrast, mice with a defined microbiota including A. finegoldii showed enhanced colonic expression of intestinal IL-22 and Reg3γ restoring intestinal barrier function. This study supports the epidemiological observations and adds a causal explanation for the health promoting effects of the most common biopolymer on earth.


Asunto(s)
Celulosa/metabolismo , Fibras de la Dieta/metabolismo , Células Epiteliales/metabolismo , Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/inmunología , Animales , Antiinflamatorios/metabolismo , Bacteroidetes/metabolismo , Colitis/patología , Inflamación/patología , Interleucinas/biosíntesis , Mucosa Intestinal/microbiología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Pancreatitis/biosíntesis , Interleucina-22
14.
Sci Transl Med ; 12(565)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33055245

RESUMEN

Although infection with the human enteropathogen Giardia lamblia causes self-limited diarrhea in adults, infant populations in endemic areas experience persistent pathogen carriage in the absence of diarrhea. The persistence of this protozoan parasite in infants has been associated with reduced weight gain and linear growth (height-for-age). The mechanisms that support persistent infection and determine the different disease outcomes in the infant host are incompletely understood. Using a neonatal mouse model of persistent G. lamblia infection, we demonstrate that G. lamblia induced bile secretion and used the bile constituent phosphatidylcholine as a substrate for parasite growth. In addition, we show that G. lamblia infection altered the enteric microbiota composition, leading to enhanced bile acid deconjugation and increased expression of fibroblast growth factor 15. This resulted in elevated energy expenditure and dysregulated lipid metabolism with reduced adipose tissue, body weight gain, and growth in the infected mice. Our results indicate that this enteropathogen's modulation of bile acid metabolism and lipid metabolism in the neonatal mouse host led to an altered body composition, suggesting how G. lamblia infection could contribute to growth restriction in infants in endemic areas.


Asunto(s)
Microbioma Gastrointestinal , Giardiasis , Animales , Bilis , Giardia , Homeostasis , Ratones
15.
Artículo en Inglés | MEDLINE | ID: mdl-30763867

RESUMEN

The fecal metabolome is a complex mixture of endogenous, microbial metabolites, and food derived compounds. Hydrophilic interaction liquid chromatography (HILIC) enables the analysis of polar compounds, which is a valuable alternative to reversed-phase liquid chromatography in the field of metabolomics due to its ability to retain a greater portion of the polar metabolome. The objective of the study was to find the optimal chromatographic solution to perform non-targeted metabolomics of feces by means of HILIC ultra-high-pressure liquid chromatography mass spectrometry (UHPLC-Q-TOF-MS). The performance was systematically investigated analyzing a pooled fecal sample, and mixtures of 150 metabolites from different families, including for example amino acids, amines, indole derivatives, fatty acids and carbohydrates. Three different stationary phases (zwitterionic, amide and unbonded silica) were operated at three pH values (4.6, 6.8 and 9.0), and three salt gradient conditions (5-5, 5-10 and 5-25 mM ammonium acetate). Amide and zwitterionic stationary phases performed similarly at low pH, with highest number of detected standards, which increased by increasing the salt gradient. The amide column showed slightly better performance in terms of separation of isomers and peak widths and remarkably good performance at basic pH, with highest number of metabolite features in the non-targeted analysis. The zwitterionic column operated best in terms of number of detected standards, retention time distribution of standards and metabolite feature across whole chromatographic run. Thus, the zwitterionic column was proven to suit for non-targeted analysis of fecal samples, resulting in good coverage of especially amino acids and carbohydrates.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Heces/química , Espectrometría de Masas/métodos , Metaboloma/fisiología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Metabolómica/métodos , Reproducibilidad de los Resultados
16.
J Agric Food Chem ; 67(28): 8061-8069, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31264412

RESUMEN

Food processing of infant formula alters chemical structures, including the formation of Maillard reaction products between proteins and sugars. We detected early Maillard reaction products, so-called Amadori products, in stool samples of formula-fed infants. In total, four Amadori products (N-deoxylactulosyllysine, N-deoxyfructosyllysine, N-deoxylactulosylleucylisoleucine, N-deoxyfructosylleucylisoleucine) were identified by a combination of complementary nontargeted and targeted metabolomics approaches. Chemical structures were confirmed by preparation and isolation of reference compounds, LC-MS/MS, and NMR. The leucylisoleucine Amadori compounds, which most likely originate from ß-lactoglobulin, were excreted throughout the first year of life in feces of formula-fed infants but were absent in feces of breastfed infants. Despite high inter- and intraindividual differences of Amadori products in the infants' stool, solid food introduction resulted in a continuous decrease, proving infant formula as the major source of the excreted Amadori products.


Asunto(s)
Alimentación con Biberón/estadística & datos numéricos , Heces/química , Productos Finales de Glicación Avanzada/química , Fórmulas Infantiles/análisis , Cromatografía Liquida , Femenino , Manipulación de Alimentos , Humanos , Lactante , Fórmulas Infantiles/efectos adversos , Espectroscopía de Resonancia Magnética , Reacción de Maillard , Masculino , Espectrometría de Masas en Tándem
17.
Mol Metab ; 22: 96-109, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30792016

RESUMEN

OBJECTIVE: The gut microbiota is an important influencing factor of metabolic health. Although dietary interventions with probiotics, prebiotics, and synbiotics can be effective means to regulate obesity and associated comorbidities, the underlying shifts in gut microbial communities, especially at the functional level, have not been characterized in great details. In this study, we sought to investigate the effects of synbiotics on the regulation of gut microbiota and the alleviation of high-fat diet (HFD)-induced metabolic disorders in mice. METHODS: Specific pathogen-free (SPF) male C57BL/6J mice were fed diets with either 10% (normal diet, ND) or 60% (high-fat diet, HFD) of total calories from fat (lard). Dietary interventions in the HFD-fed mice included (i) probiotic (Bifidobacterium animalis subsp. lactis and Lactobacillus paracasei subsp. paracasei DSM 46331), (ii) prebiotic (oat ß-glucan), and (iii) synbiotic (a mixture of i and ii) treatments for 12 weeks. Besides detailed characterization of host metabolic parameters, a multi-omics approach was used to systematically profile the microbial signatures at both the phylogenetic and functional levels using 16S rRNA gene sequencing, metaproteomics and targeted metabolomics analysis. RESULTS: The synbiotic intervention significantly reduced body weight gain and alleviated features of metabolic complications. At the phylogenetic level, the synbiotic treatment significantly reversed HFD-induced changes in microbial populations, both in terms of richness and the relative abundance of specific taxa. Potentially important species such as Faecalibaculum rodentium and Alistipes putredinis that might mediate the beneficial effects of the synbiotic were identified. At the functional level, short-chain fatty acid and bile acid profiles revealed that all dietary interventions significantly restored cecal levels of acetate, propionate, and butyrate, while the synbiotic treatment reduced the bile acid pools most efficiently. Metaproteomics revealed that the effects of the synbiotic intervention might be mediated through metabolic pathways involved in carbohydrate, amino acid, and energy metabolisms. CONCLUSIONS: Our results suggested that dietary intervention using the novel synbiotic can alleviate HFD-induced weight gain and restore gut microbial ecosystem homeostasis phylogenetically and functionally.


Asunto(s)
Microbioma Gastrointestinal , Obesidad/metabolismo , Simbióticos , Animales , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/inducido químicamente
18.
Artículo en Inglés | MEDLINE | ID: mdl-29522956

RESUMEN

Bile acids (BAs) are major components of bile synthesized from cholesterol and take part in the digestion of dietary lipids, as well as having signaling functions. They undergo extensive microbial metabolism inside the gastrointestinal tract. Here, we present a method of ultra-high pressure liquid chromatography coupled to ion trap mass spectrometry for quantification of 45 BAs in mouse cecum. The system was validated in regard to sensitivity with limits of detection and quantification (0.6-24.9 nM), interday accuracy (102.4%), interday precision (15.2%), recovery rate (74.7%), matrix effect (98.2%) and carry-over effect (<1.1%). Afterwards, we applied our method to investigate the effect of metformin on BA profiles. Diabetic mice were treated with metformin for 1 day or 14 days. One day of treatment resulted in a significant increase of total BA concentration (2.7-fold increase; db/db metformin 5.32 µmol/g, db/db control mice 1.95 µmol/g), most notable in levels of 7-oxodeoxycholic, 3-dehydrocholic and cholic acid. We observed only minor impact on BA metabolism after 14 days of metformin treatment, compared to the single treatment. Furthermore, healthy wild type mice had elevated concentrations of allocholic and ω-muricholic acid compared to diabetic mice. Our method proved the applicability of profiling BAs in cecum to investigate intestinal BA metabolism in diabetes and pharmacological applications.


Asunto(s)
Ácidos y Sales Biliares/análisis , Ciego/efectos de los fármacos , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Metformina/farmacología , Animales , Ácidos y Sales Biliares/metabolismo , Diabetes Mellitus Experimental/metabolismo , Límite de Detección , Modelos Lineales , Masculino , Ratones , Ratones Transgénicos , Reproducibilidad de los Resultados
19.
Sci Rep ; 8(1): 10431, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29993025

RESUMEN

The autoimmune neurological disease, Multiple Sclerosis (MS), have increased at alarming rates in the Western society over the last few decades. While there are numerous efforts to develop novel treatment approaches, there is an unmet need to identify preventive strategies. We explored whether central nervous system (CNS) autoimmunity can be prevented through dietary manipulation using a spontaneous autoimmune encephalomyelitis mouse model. We report that the nutritional supplementation of non-fermentable fiber, common components of a vegetarian diet, in early adult life, prevents autoimmune disease. Dietary non-fermentable fiber alters the composition of the gut microbiota and metabolic profile with an increase in the abundance of long-chain fatty acids. Immune assays revealed that cecal extracts and a long chain fatty acid but not cecal lysates promoted autoimmune suppressive TH2 immune responses, demonstrating that non-fermentable fiber-induced metabolic changes account for the beneficial effects. Overall, these findings identify a non-invasive dietary strategy to prevent CNS autoimmunity and warrants a focus on nutritional approaches in human MS.


Asunto(s)
Fibras de la Dieta/farmacología , Encefalomielitis Autoinmune Experimental/prevención & control , Animales , Enfermedades Autoinmunes/prevención & control , Sistema Nervioso Central/inmunología , Fibras de la Dieta/uso terapéutico , Modelos Animales de Enfermedad , Ácidos Grasos/inmunología , Microbioma Gastrointestinal , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Ratones , Células Th2/inmunología
20.
Front Immunol ; 8: 1036, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28894447

RESUMEN

Short-chain fatty acids (SCFAs), which are generated by the bacterial fermentation of dietary fibers, promote expansion of regulatory T cells (Tregs). Potential therapeutic value of SCFAs has been recently highlighted in the experimental models of T cell-mediated autoimmunity and allergic inflammation. These studies suggest that physiological intestinal concentrations of SCFAs within the millimolar range are crucial for dampening inflammation-mediated processes. Here, we describe opposing effects of SCFAs on T cell-mediated immune responses. In accordance with published data, lower butyrate concentrations facilitated differentiation of Tregs in vitro and in vivo under steady-state conditions. In contrast, higher concentrations of butyrate induced expression of the transcription factor T-bet in all investigated T cell subsets resulting in IFN-γ-producing Tregs or conventional T cells. This effect was mediated by the inhibition of histone deacetylase activity and was independent of SCFA-receptors FFA2 and FFA3 as well as of Na+-coupled SCFA transporter Slc5a8. Importantly, while butyrate was not able to induce the generation of Tregs in the absence of TGF-ß1, the expression of T-bet and IFN-γ was triggered upon stimulation of CD4+ T cells with this SCFA alone. Moreover, the treatment of germ-free mice with butyrate enhanced the expression of T-bet and IFN-γ during acute colitis. Our data reveal that, depending on its concentration and immunological milieu, butyrate may exert either beneficial or detrimental effects on the mucosal immune system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA