Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 166(4): 950-962, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27518565

RESUMEN

Posttranslational modifications (PTMs) of tubulin specify microtubules for specialized cellular functions and comprise what is termed a "tubulin code." PTMs of histones comprise an analogous "histone code," although the "readers, writers, and erasers" of the cytoskeleton and epigenome have heretofore been distinct. We show that methylation is a PTM of dynamic microtubules and that the histone methyltransferase SET-domain-containing 2 (SETD2), which is responsible for H3 lysine 36 trimethylation (H3K36me3) of histones, also methylates α-tubulin at lysine 40, the same lysine that is marked by acetylation on microtubules. Methylation of microtubules occurs during mitosis and cytokinesis and can be ablated by SETD2 deletion, which causes mitotic spindle and cytokinesis defects, micronuclei, and polyploidy. These data now identify SETD2 as a dual-function methyltransferase for both chromatin and the cytoskeleton and show a requirement for methylation in maintenance of genomic stability and the integrity of both the tubulin and histone codes.


Asunto(s)
Ensamble y Desensamble de Cromatina , Citoesqueleto/metabolismo , Código de Histonas , N-Metiltransferasa de Histona-Lisina/metabolismo , Línea Celular Tumoral , Citocinesis , Inestabilidad Genómica , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , Microtúbulos/metabolismo , Mitosis , Procesamiento Proteico-Postraduccional , Tubulina (Proteína)/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(39): e2303752120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37722039

RESUMEN

Isochromosomes are mirror-imaged chromosomes with simultaneous duplication and deletion of genetic material which may contain two centromeres to create isodicentric chromosomes. Although isochromosomes commonly occur in cancer and developmental disorders and promote genome instability, mechanisms that prevent isochromosomes are not well understood. We show here that the tumor suppressor and methyltransferase SETD2 is essential to prevent these errors. Using cellular and cytogenetic approaches, we demonstrate that loss of SETD2 or its epigenetic mark, histone H3 lysine 36 trimethylation (H3K36me3), results in the formation of isochromosomes as well as isodicentric and acentric chromosomes. These defects arise during DNA replication and are likely due to faulty homologous recombination by RAD52. These data provide a mechanism for isochromosome generation and demonstrate that SETD2 and H3K36me3 are essential to prevent the formation of this common mutable chromatin structure known to initiate a cascade of genomic instability in cancer.


Asunto(s)
Isocromosomas , Humanos , Centrómero , Aberraciones Cromosómicas , Citogenética , Replicación del ADN , Inestabilidad Genómica
3.
Proc Natl Acad Sci U S A ; 120(21): e2209639120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186844

RESUMEN

Renal medullary carcinoma (RMC) is an aggressive kidney cancer that almost exclusively develops in individuals with sickle cell trait (SCT) and is always characterized by loss of the tumor suppressor SMARCB1. Because renal ischemia induced by red blood cell sickling exacerbates chronic renal medullary hypoxia in vivo, we investigated whether the loss of SMARCB1 confers a survival advantage under the setting of SCT. Hypoxic stress, which naturally occurs within the renal medulla, is elevated under the setting of SCT. Our findings showed that hypoxia-induced SMARCB1 degradation protected renal cells from hypoxic stress. SMARCB1 wild-type renal tumors exhibited lower levels of SMARCB1 and more aggressive growth in mice harboring the SCT mutation in human hemoglobin A (HbA) than in control mice harboring wild-type human HbA. Consistent with established clinical observations, SMARCB1-null renal tumors were refractory to hypoxia-inducing therapeutic inhibition of angiogenesis. Further, reconstitution of SMARCB1 restored renal tumor sensitivity to hypoxic stress in vitro and in vivo. Together, our results demonstrate a physiological role for SMARCB1 degradation in response to hypoxic stress, connect the renal medullary hypoxia induced by SCT with an increased risk of SMARCB1-negative RMC, and shed light into the mechanisms mediating the resistance of SMARCB1-null renal tumors against angiogenesis inhibition therapies.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Rasgo Drepanocítico , Animales , Humanos , Ratones , Carcinoma de Células Renales/patología , Hipoxia/genética , Hipoxia/metabolismo , Riñón/metabolismo , Neoplasias Renales/patología , Rasgo Drepanocítico/genética , Rasgo Drepanocítico/metabolismo , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo
4.
Physiol Rev ; 98(1): 89-115, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29167332

RESUMEN

Peroxisomes are highly dynamic intracellular organelles involved in a variety of metabolic functions essential for the metabolism of long-chain fatty acids, d-amino acids, and many polyamines. A byproduct of peroxisomal metabolism is the generation, and subsequent detoxification, of reactive oxygen and nitrogen species, particularly hydrogen peroxide (H2O2). Because of its relatively low reactivity (as a mild oxidant), H2O2 has a comparatively long intracellular half-life and a high diffusion rate, all of which makes H2O2 an efficient signaling molecule. Peroxisomes also have intricate connections to mitochondria, and both organelles appear to play important roles in regulating redox signaling pathways. Peroxisomal proteins are also subject to oxidative modification and inactivation by the reactive oxygen and nitrogen species they generate, but the peroxisomal LonP2 protease can selectively remove such oxidatively damaged proteins, thus prolonging the useful lifespan of the organelle. Peroxisomal homeostasis must adapt to the metabolic state of the cell, by a combination of peroxisome proliferation, the removal of excess or badly damaged organelles by autophagy (pexophagy), as well as by processes of peroxisome inheritance and motility. More recently the tumor suppressors ataxia telangiectasia mutate (ATM) and tuberous sclerosis complex (TSC), which regulate mTORC1 signaling, have been found to regulate pexophagy in response to variable levels of certain reactive oxygen and nitrogen species. It is now clear that any significant loss of peroxisome homeostasis can have devastating physiological consequences. Peroxisome dysregulation has been implicated in several metabolic diseases, and increasing evidence highlights the important role of diminished peroxisomal functions in aging processes.


Asunto(s)
Homeostasis/fisiología , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Proteostasis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Homeostasis/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/farmacología , Peroxisomas/efectos de los fármacos , Proteostasis/efectos de los fármacos
5.
Am J Obstet Gynecol ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825029

RESUMEN

BACKGROUND: Black women experience a disproportionate impact of uterine fibroids compared to White women, including earlier diagnosis, higher frequency, and more severe symptoms. The etiology underlying this racial disparity remains elusive. OBJECTIVE: The aim of this study was to evaluate the molecular differences in normal myometrium (fibroid-free uteri) and at-risk myometrium (fibroid-containing uteri) tissues in Black and White women. STUDY DESIGN: We conducted whole-genome RNA-seq on normal and at-risk myometrium tissues obtained from both self-identified Black and White women (not Hispanic or Latino) to determine global gene expression profiles and to conduct enriched pathway analyses (n=3 per group). We initially assessed the differences within the same type of tissue (normal or at-risk myometrium) between races. Subsequently, we analyzed the transcriptome of normal myometrium compared to at-risk myometrium in each race and determined the differences between them. We validated our findings through real-time PCR (sample size range=5-12), western blot (sample size range=5-6), and immunohistochemistry techniques (sample size range=9-16). RESULTS: The transcriptomic analysis revealed distinct profiles between Black and White women in normal and at-risk myometrium tissues. Interestingly, genes and pathways related to extracellular matrix and mechanosensing were more enriched in normal myometrium from Black than White women. Transcription factor enrichment analysis detected greater activity of the serum response transcription factor positional motif in normal myometrium from Black compared to White women. Furthermore, we observed increased expression levels of myocardin-related transcription factor-serum response factor and the serum response factor in the same comparison. In addition, we noted increased expression of both mRNA and protein levels of vinculin, a target gene of the serum response factor, in normal myometrium tissues from Black women as compared to White women. Importantly, the transcriptomic profile of normal to at-risk myometrium conversion differs between Black and White women. Specifically, we observed that extracellular matrix-related pathways are involved in the transition from normal to at-risk myometrium and that these processes are exacerbated in Black women. We found increased levels of Tenascin C, type I collagen alpha 1 chain, fibronectin, and phospho-p38 MAPK (Thr180/Tyr182, active) protein levels in at-risk over normal myometrium tissues from Black women, whereas such differences were not observed in samples from White women. CONCLUSION: These findings indicate that the racial disparities in uterine fibroids may be attributed to heightened production of extracellular matrix in the myometrium in Black women, even before the tumors appear. Future research is needed to understand early life determinants of the observed racial differences.

6.
Cell Mol Life Sci ; 80(10): 288, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689587

RESUMEN

Environmental exposure to endocrine-disrupting chemicals (EDCs) is linked to the development of uterine fibroids (UFs) in women. UFs, non-cancerous tumors, are thought to originate from abnormal myometrial stem cells (MMSCs). Defective DNA repair capacity may contribute to the emergence of mutations that promote tumor growth. The multifunctional cytokine TGFß1 is associated with UF progression and DNA damage repair pathways. To investigate the impact of EDC exposure on TGFß1 and nucleotide excision repair (NER) pathways, we isolated MMSCs from 5-month-old Eker rats exposed neonatally to diethylstilbestrol (DES), an EDC, or to vehicle (VEH). EDC-MMSCs exhibited overactivated TGFß1 signaling and reduced mRNA and protein levels of NER pathway components compared to VEH-MMSCs. EDC-MMSCs also demonstrated impaired NER capacity. Exposing VEH-MMSCs to TGFß1 decreased NER capacity while inhibiting TGFß signaling in EDC-MMSCs restored it. RNA-seq analysis and further validation revealed decreased expression of Uvrag, a tumor suppressor gene involved in DNA damage recognition, in VEH-MMSCs treated with TGFß1, but increased expression in EDC-MMSCs after TGFß signaling inhibition. Overall, we demonstrated that the overactivation of the TGFß pathway links early life exposure to EDCs with impaired NER capacity, which would lead to increased genetic instability, arise of mutations, and fibroid tumorigenesis. We demonstrated that the overactivation of the TGFß pathway links early life exposure to EDCs with impaired NER capacity, which would lead to increased fibroid incidence.


Asunto(s)
Disruptores Endocrinos , Leiomioma , Femenino , Animales , Ratas , Reparación del ADN/genética , Daño del ADN , Factor de Crecimiento Transformador beta/genética , Carcinogénesis , Disruptores Endocrinos/toxicidad , Leiomioma/inducido químicamente , Leiomioma/genética
7.
J Biol Chem ; 297(1): 100898, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34157286

RESUMEN

Post-translational modifications to tubulin are important for many microtubule-based functions inside cells. It was recently shown that methylation of tubulin by the histone methyltransferase SETD2 occurs on mitotic spindle microtubules during cell division, with its absence resulting in mitotic defects. However, the catalytic mechanism of methyl addition to tubulin is unclear. We used a truncated version of human wild type SETD2 (tSETD2) containing the catalytic SET and C-terminal Set2-Rpb1-interacting (SRI) domains to investigate the biochemical mechanism of tubulin methylation. We found that recombinant tSETD2 had a higher activity toward tubulin dimers than polymerized microtubules. Using recombinant single-isotype tubulin, we demonstrated that methylation was restricted to lysine 40 of α-tubulin. We then introduced pathogenic mutations into tSETD2 to probe the recognition of histone and tubulin substrates. A mutation in the catalytic domain (R1625C) allowed tSETD2 to bind to tubulin but not methylate it, whereas a mutation in the SRI domain (R2510H) caused loss of both tubulin binding and methylation. Further investigation of the role of the SRI domain in substrate binding found that mutations within this region had differential effects on the ability of tSETD2 to bind to tubulin versus the binding partner RNA polymerase II for methylating histones in vivo, suggesting distinct mechanisms for tubulin and histone methylation by SETD2. Finally, we found that substrate recognition also requires the negatively charged C-terminal tail of α-tubulin. Together, this study provides a framework for understanding how SETD2 serves as a dual methyltransferase for both histone and tubulin methylation.


Asunto(s)
Dominio Catalítico , N-Metiltransferasa de Histona-Lisina/química , Tubulina (Proteína)/metabolismo , Animales , Células COS , Chlorocebus aethiops , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Metilación , Mutación , Unión Proteica , Procesamiento Proteico-Postraduccional
8.
Brain ; 144(8): 2527-2540, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34014281

RESUMEN

Gene discovery efforts in autism spectrum disorder have identified heterozygous defects in chromatin remodeller genes, the 'readers, writers and erasers' of methyl marks on chromatin, as major contributors to this disease. Despite this advance, a convergent aetiology between these defects and aberrant chromatin architecture or gene expression has remained elusive. Recently, data have begun to emerge that chromatin remodellers also function directly on the cytoskeleton. Strongly associated with autism spectrum disorder, the SETD2 histone methyltransferase for example, has now been shown to directly methylate microtubules of the mitotic spindle. However, whether microtubule methylation occurs in post-mitotic cells, for example on the neuronal cytoskeleton, is not known. We found the SETD2 α-tubulin lysine 40 trimethyl mark occurs on microtubules in the brain and in primary neurons in culture, and that the SETD2 C-terminal SRI domain is required for binding and methylation of α-tubulin. A CRISPR knock-in of a pathogenic SRI domain mutation (Setd2SRI) that disables microtubule methylation revealed at least one wild-type allele was required in mice for survival, and while viable, heterozygous Setd2SRI/wtmice exhibited an anxiety-like phenotype. Finally, whereas RNA-sequencing (RNA-seq) and chromatin immunoprecipitation-sequencing (ChIP-seq) showed no concomitant changes in chromatin methylation or gene expression in Setd2SRI/wtmice, primary neurons exhibited structural deficits in axon length and dendritic arborization. These data provide the first demonstration that microtubules of neurons are methylated, and reveals a heterozygous chromatin remodeller defect that specifically disables microtubule methylation is sufficient to drive an autism-associated phenotype.


Asunto(s)
Ansiedad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Animales , Encéfalo/metabolismo , Histonas/metabolismo , Metilación , Ratones , Fenotipo
9.
Mol Cell ; 53(2): 209-20, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24389102

RESUMEN

Diverse environmental cues converge on and are integrated by the mTOR signaling network to control cellular growth and homeostasis. The mammalian Tsc1-Tsc2 GTPase activating protein (GAP) heterodimer is a critical negative regulator of Rheb and mTOR activation. The RalGAPα-RalGAPß heterodimer shares sequence and structural similarity with Tsc1-Tsc2. Unexpectedly, we observed that C. elegans expresses orthologs for the Rheb and RalA/B GTPases and for RalGAPα/ß, but not Tsc1/2. This prompted our investigation to determine whether RalGAPs additionally modulate mTOR signaling. We determined that C. elegans RalGAP loss decreased lifespan, consistent with a Tsc-like function. Additionally, RalGAP suppression in mammalian cells caused RalB-selective activation and Sec5- and exocyst-dependent engagement of mTORC1 and suppression of autophagy. Unexpectedly, we also found that Tsc1-Tsc2 loss activated RalA/B independently of Rheb-mTOR signaling. Finally, RalGAP suppression caused mTORC1-dependent pancreatic tumor cell invasion. Our findings identify an unexpected crosstalk and integration of the Ral and mTOR signaling networks.


Asunto(s)
Autofagia/genética , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/citología , Senescencia Celular/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP Monoméricas/fisiología , Invasividad Neoplásica/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Unión al GTP ral/fisiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro , Transducción de Señal , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas de Unión al GTP ral/genética , Proteínas de Unión al GTP ral/metabolismo
10.
BMC Pregnancy Childbirth ; 22(1): 525, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764940

RESUMEN

BACKGROUND: In prior work we observed differences in morphology features in placentas from an autism-enriched cohort as compared to those from a general population sample. Here we sought to examine whether these differences associate with ASD-related outcomes in the child. METHODS: Participants (n = 101) were drawn from the Early Autism Risk Longitudinal Investigation (EARLI), a cohort following younger siblings of children with autism spectrum disorder (ASD). ASD-related outcomes, including the Social Responsiveness Scale (SRS), Mullen Scales of Early Learning (MSEL) Early Learning Composite, and ASD diagnosis, were assessed at age 3. Crude and adjusted linear regression was used to examine associations between placental morphological features (parametrized continuously and in quartiles) and SRS and MSEL scores; comparisons by ASD case status were explored as secondary analyses due to the small number of cases (n = 20). RESULTS: In adjusted analyses, we observed a modest positive association between umbilical cord eccentricity, defined as the ratio of the maximum:minimum radius from the cord insertion point, and SRS scores (Beta = 1.68, 95%CI = 0.45, 2.9). Positive associations were also suggested between placental maximum thickness and cord centrality and SRS scores, though these were estimated with little precision. Associations between other placental morphological features and outcomes were not observed. CONCLUSIONS: Our analyses suggested a potential association between umbilical cord features and ASD-related traits, of interest as non-central cord insertion may reflect reduced placenta efficiency. Future studies with larger sample sizes are needed to further examine these and other placental features in association with ASD-related outcomes.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Niño , Preescolar , Femenino , Humanos , Estudios Longitudinales , Placenta , Embarazo , Hermanos
11.
Hum Mol Genet ; 28(16): 2659-2674, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31009952

RESUMEN

DNA methylation acts at the interface of genetic and environmental factors relevant for autism spectrum disorder (ASD). Placenta, normally discarded at birth, is a potentially rich source of DNA methylation patterns predictive of ASD in the child. Here, we performed whole methylome analyses of placentas from a prospective study MARBLES (Markers of Autism Risk in Babies-Learning Early Signs) of high-risk pregnancies. A total of 400 differentially methylated regions (DMRs) discriminated placentas stored from children later diagnosed with ASD compared to typically developing controls. These ASD DMRs were significantly enriched at promoters, mapped to 596 genes functionally enriched in neuronal development, and overlapped genetic ASD risk. ASD DMRs at CYP2E1 and IRS2 reached genome-wide significance, replicated by pyrosequencing and correlated with expression differences in brain. Methylation at CYP2E1 associated with both ASD diagnosis and genotype within the DMR. In contrast, methylation at IRS2 was unaffected by within DMR genotype but modified by preconceptional maternal prenatal vitamin use. This study therefore identified two potentially useful early epigenetic markers for ASD in placenta.


Asunto(s)
Trastorno Autístico/etiología , Citocromo P-450 CYP2E1/genética , Metilación de ADN , Proteínas Sustrato del Receptor de Insulina/genética , Exposición Materna , Placenta/metabolismo , Efectos Tardíos de la Exposición Prenatal , Trastorno del Espectro Autista/etiología , Trastorno Autístico/metabolismo , Biomarcadores , Cadherinas/metabolismo , Estudios de Casos y Controles , Niño , Susceptibilidad a Enfermedades , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Embarazo , Riesgo , Transducción de Señal , Proteínas Wnt/metabolismo
12.
Biochem Biophys Res Commun ; 558: 202-208, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33036756

RESUMEN

The process of autophagy is dysregulated in many cancers including clear cell renal cell carcinoma (ccRCC). Autophagy involves the coordination of numerous autophagy-related (ATG) genes, as well as processes involving the actin cytoskeleton. The histone methyltransferase SETD2, frequently inactivated in ccRCC, has recently been shown to also methylate cytoskeletal proteins, which in the case of actin lysine 68 trimethylation (ActK68me3) regulates actin polymerization dynamics. Here we show that cells lacking SETD2 exhibit autophagy defects, as well as decreased interaction of the actin nucleation promoting factor WHAMM with its target actin, which is required for initiation of autophagy. Interestingly, the WHAMM actin binding deficit could be rescued with pharmacologic induction of actin polymerization in SETD2-null cells using Jasplakinolide. These data indicate that the decreased interaction between WHAMM and its target actin in SETD2-null cells was secondary to altered actin dynamics rather than loss of the SETD2 ActK68me3 mark itself, and underscores the importance of the functional defect in actin polymerization in SETD2-null cells exhibiting autophagy defects.


Asunto(s)
Actinas/metabolismo , Carcinoma de Células Renales/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Neoplasias Renales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Autofagia/genética , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular , Línea Celular Tumoral , Regulación hacia Abajo , Técnicas de Inactivación de Genes , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología
13.
Environ Health ; 20(1): 9, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468146

RESUMEN

BACKGROUND: In August 2017, Hurricane Harvey caused unprecedented flooding across the greater Houston area. Given the potential for widespread flood-related exposures, including mold and sewage, and the emotional and mental toll caused by the flooding, we sought to evaluate the short- and long-term impact of flood-related exposures on the health of Houstonians. Our objectives were to assess the association of flood-related exposures with allergic symptoms and stress among Houston-area residents at two time points: within approximately 30 days (T1) and 12 months (T2) after Hurricane Harvey's landfall. METHODS: The Houston Hurricane Harvey Health (Houston-3H) Study enrolled a total of 347 unique participants from four sites across Harris County at two times: within approximately 1-month of Harvey (T1, n = 206) and approximately 12-months after Harvey (T2, n = 266), including 125 individuals who participated at both time points. Using a self-administered questionnaire, participants reported details on demographics, flood-related exposures, and health outcomes, including allergic symptoms and stress. RESULTS: The majority of participants reported hurricane-related flooding in their homes at T1 (79.1%) and T2 (87.2%) and experienced at least one allergic symptom after the hurricane (79.4% at T1 and 68.4% at T2). In general, flood-exposed individuals were at increased risk of upper respiratory tract allergic symptoms, reported at both the T1 and T2 time points, with exposures to dirty water and mold associated with increased risk of multiple allergic symptoms. The mean stress score of study participants at T1 was 8.0 ± 2.1 and at T2, 5.1 ± 3.2, on a 0-10 scale. Participants who experienced specific flood-related exposures reported higher stress scores when compared with their counterparts, especially 1 year after Harvey. Also, a supplementary paired-samples analysis showed that reports of wheezing, shortness of breath, and skin rash did not change between T1 and T2, though other conditions were less commonly reported at T2. CONCLUSION: These initial Houston-3H findings demonstrate that flooding experiences that occurred as a consequence of Hurricane Harvey had lasting impacts on the health of Houstonians up to 1 year after the hurricane.


Asunto(s)
Tormentas Ciclónicas , Desastres , Inundaciones , Hipersensibilidad/epidemiología , Estrés Psicológico/epidemiología , Adolescente , Adulto , Anciano , Exposición a Riesgos Ambientales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores Sociológicos , Encuestas y Cuestionarios , Texas/epidemiología , Adulto Joven
14.
J Exp Biol ; 223(Pt 13)2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620673

RESUMEN

The epigenome determines heritable patterns of gene expression in the absence of changes in DNA sequence. The result is programming of different cellular-, tissue- and organ-specific phenotypes from a single organismic genome. Epigenetic marks that comprise the epigenome (e.g. methylation) are placed upon or removed from chromatin (histones and DNA) to direct the activity of effectors that regulate gene expression and chromatin structure. Recently, the cytoskeleton has been identified as a second target for the cell's epigenetic machinery. Several epigenetic 'readers, writers and erasers' that remodel chromatin have been discovered to also remodel the cytoskeleton, regulating structure and function of microtubules and actin filaments. This points to an emerging paradigm for dual-function remodelers with 'chromatocytoskeletal' activity that can integrate cytoplasmic and nuclear functions. For example, the SET domain-containing 2 methyltransferase (SETD2) has chromatocytoskeletal activity, methylating both histones and microtubules. The SETD2 methyl mark on chromatin is required for efficient DNA repair, and its microtubule methyl mark is required for proper chromosome segregation during mitosis. This unexpected convergence of SETD2 activity on histones and microtubules to maintain genomic stability suggests the intriguing possibility of an expanded role in the cell for chromatocytoskeletal proteins that read, write and erase methyl marks on the cytoskeleton as well as chromatin. Coordinated use of methyl marks to remodel both the epigenome and the (epi)cytoskeleton opens the possibility for integrated regulation (which we refer to as 'epiregulation') of other higher-level functions, such as muscle contraction or learning and memory, and could even have evolutionary implications.


Asunto(s)
Epigenoma , Histonas , Cromatina/genética , Citoesqueleto/metabolismo , Metilación de ADN , Epigénesis Genética , Histonas/metabolismo , Metilación , Microtúbulos/metabolismo
15.
J Biol Chem ; 292(6): 2255-2265, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28031468

RESUMEN

PRMT5 is the primary enzyme responsible for the deposition of the symmetric dimethylarginine in mammalian cells. In an effort to understand how PRMT5 is regulated, we identified a threonine phosphorylation site within a C-terminal tail motif, which is targeted by the Akt/serum- and glucocorticoid-inducible kinases. While investigating the function of this posttranslational modification, we serendipitously discovered that its free C-terminal tail binds PDZ domains (when unphosphorylated) and 14-3-3 proteins (when phosphorylated). In essence, a phosphorylation event within the last few residues of the C-terminal tail generates a posttranslational modification-dependent PDZ/14-3-3 interaction "switch." The C-terminal motif of PRMT5 is required for plasma membrane association, and loss of this switching capacity is not compatible with life. This signaling phenomenon was recently reported for the HPV E6 oncoprotein but has not yet been observed for mammalian proteins. To investigate the prevalence of PDZ/14-3-3 switching in signal transduction, we built a protein domain microarray that harbors PDZ domains and 14-3-3 proteins. We have used this microarray to interrogate the C-terminal tails of a small group of candidate proteins and identified ERBB4, PGHS2, and IRK1 (as well as E6 and PRMT5) as conforming to this signaling mode, suggesting that PDZ/14-3-3 switching may be a broad biological paradigm.


Asunto(s)
Proteínas 14-3-3/metabolismo , Dominios PDZ , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas 14-3-3/química , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Humanos , Ratones , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/química
16.
Int J Cancer ; 142(5): 874-882, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28836271

RESUMEN

The interaction between the (epi)genetic makeup of an individual and his/her environmental exposure record (exposome) is accepted as a determinant factor for a significant proportion of human malignancies. Recent evidence has highlighted the key role of epigenetic mechanisms in mediating gene-environment interactions and translating exposures into tumorigenesis. There is also growing evidence that epigenetic changes may be risk factor-specific ("fingerprints") that should prove instrumental in the discovery of new biomarkers in cancer. Here, we review the state of the science of epigenetics associated with environmental stimuli and cancer risk, highlighting key developments in the field. Critical knowledge gaps and research needs are discussed and advances in epigenomics that may help in understanding the functional relevance of epigenetic alterations. Key elements required for causality inferences linking epigenetic changes to exposure and cancer are discussed and how these alterations can be incorporated in carcinogen evaluation and in understanding mechanisms underlying epigenome deregulation by the environment.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Epigénesis Genética , Epigenómica , Interacción Gen-Ambiente , Neoplasias/etiología , Animales , Metilación de ADN , Humanos , Neoplasias/patología , Factores de Riesgo
17.
Stem Cells ; 35(3): 666-678, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27739139

RESUMEN

Despite the high prevalence and major negative impact of uterine fibroids (UFs) on women's health, their pathogenesis remains largely unknown. While tumor-initiating cells have been previously isolated from UFs, the cell of origin for these tumors in normal myometrium has not been identified. We isolated cells with Stro1/CD44 surface markers from normal myometrium expressing stem cell markers Oct-4/c-kit/nanog that exhibited the properties of myometrial stem/progenitor-like cells (MSCs). Using a murine model for UFs, we showed that the cervix was a hypoxic "niche" and primary site (96%) for fibroid development in these animals. The pool size of these MSCs also responded to environmental cues, contracting with age and expanding in response to developmental environmental exposures that promote fibroid development. Translating these findings to women, the number of MSCs in unaffected human myometrium correlated with risk for developing UFs. Caucasian (CC) women with fibroids had increased numbers of MSCs relative to CC women without fibroids, and African-American (AA) women at highest risk for these tumors had the highest number of MSCs: AA-with fibroids > CC-with fibroids > AA-without fibroids > CC-without fibroids. These data identify Stro1+ /CD44+ MSCs as MSC/progenitor cell for UFs, and a target for ethnic and environmental factors that increase UF risk. Stem Cells 2017;35:666-678.


Asunto(s)
Carcinogénesis/patología , Compartimento Celular , Disruptores Endocrinos/toxicidad , Leiomioma/patología , Miometrio/patología , Envejecimiento , Animales , Antígenos de Superficie/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinogénesis/efectos de los fármacos , Recuento de Células , Exposición a Riesgos Ambientales , Femenino , Hormonas/farmacología , Humanos , Receptores de Hialuranos/metabolismo , Ratones Endogámicos NOD , Ratones SCID , Oxígeno/farmacología , Ratas , Factores de Riesgo , Esteroides/farmacología , Neoplasias Uterinas/patología
18.
Dev Psychobiol ; 60(6): 629-638, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29900528

RESUMEN

Growing evidence identifies maternal adiposity as a potentially modifiable risk factor for adverse neurodevelopment. This retrospective cohort analysis examined whether maternal prepregnancy adiposity and gestational weight gain were associated with behavioral outcomes in 173 rhesus macaque infants at the California National Primate Research Center. Dams conceived indoors, had uncomplicated pregnancies, delivered vaginally, and reared infants indoors. Infants underwent standardized biobehavioral analysis at 90-120 days of age from 3/2001-5/2015. Offspring of mothers with greater baseline adiposity or gestational weight gain exhibited a pattern of poor adaptability characterized by greater emotionality as the assessments proceeded, blunted affective response to a human intruder challenge, and reduced interest in novel stimuli which is associated with poorer social functioning later in life. They also had lower cortisol levels following dexamethasone suppression, perhaps a response to cortisol excess during gestation. These results amplify growing public health concerns implicating maternal adiposity in impaired fetal neurobehavioral programming.


Asunto(s)
Adaptación Psicológica/fisiología , Adiposidad/fisiología , Conducta Animal/fisiología , Emociones/fisiología , Ganancia de Peso Gestacional/fisiología , Hidrocortisona/sangre , Macaca mulatta/fisiología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Conducta Social , Animales , Femenino , Macaca mulatta/metabolismo , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/sangre , Estudios Retrospectivos
19.
BMC Med Inform Decis Mak ; 17(1): 162, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29212472

RESUMEN

BACKGROUND: Autism Spectrum Disorder (ASD) is one of the fastest-growing developmental disorders in the United States. It was hypothesized that variations in the placental chorionic surface vascular network (PCSVN) structure may reflect both the overall effects of genetic and environmentally regulated variations in branching morphogenesis within the conceptus and the fetus' vital organs. This paper provides sound evidences to support the study of ASD risks with PCSVN through a combination of feature-selection and classification algorithms. METHODS: Twenty eight arterial and 8 shape-based PCSVN attributes from a high-risk ASD cohort of 89 placentas and a population-based cohort of 201 placentas were examined for ranked relevance using a modified version of the random forest algorithm, called the Boruta method. Principal component analysis (PCA) was applied to isolate principal effects of arterial growth on the fetal surface of the placenta. Linear discriminant analysis (LDA) with a 10-fold cross validation was performed to establish error statistics. RESULTS: The Boruta method selected 15 arterial attributes as relevant, implying the difference in high and low ASD risk can be explained by the arterial features alone. The five principal features obtained through PCA, which accounted for about 88% of the data variability, indicated that PCSVNs associated with placentas of high-risk ASD pregnancies generally had fewer branch points, thicker and less tortuous arteries, better extension to the surface boundary, and smaller branch angles than their population-based counterparts. CONCLUSION: We developed a set of methods to explain major PCSVN differences between placentas associated with high risk ASD pregnancies and those selected from the general population. The research paradigm presented can be generalized to study connections between PCSVN features and other maternal and fetal outcomes such as gestational diabetes and hypertension.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico , Placenta/irrigación sanguínea , Placenta/patología , Medición de Riesgo , Adulto , Algoritmos , Vellosidades Coriónicas/irrigación sanguínea , Vellosidades Coriónicas/patología , Estudios de Cohortes , Femenino , Humanos , Recién Nacido , Embarazo , Análisis de Componente Principal
20.
Proc Natl Acad Sci U S A ; 110(32): E2950-7, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23878245

RESUMEN

Reactive intermediates such as reactive nitrogen species play essential roles in the cell as signaling molecules but, in excess, constitute a major source of cellular damage. We found that nitrosative stress induced by steady-state nitric oxide (NO) caused rapid activation of an ATM damage-response pathway leading to downstream signaling by this stress kinase to LKB1 and AMPK kinases, and activation of the TSC tumor suppressor. As a result, in an ATM-, LKB1-, TSC-dependent fashion, mTORC1 was repressed, as evidenced by decreased phosphorylation of S6K, 4E-BP1, and ULK1, direct targets of the mTORC1 kinase. Decreased ULK1 phosphorylation by mTORC1 at S757 and activation of AMPK to phosphorylate ULK1 at S317 in response to nitrosative stress resulted in increased autophagy: the LC3-II/LC3-I ratio increased as did GFP-LC3 puncta and acidic vesicles; p62 levels decreased in a lysosome-dependent manner, confirming an NO-induced increase in autophagic flux. Induction of autophagy by NO correlated with loss of cell viability, suggesting that, in this setting, autophagy was functioning primarily as a cytotoxic response to excess nitrosative stress. These data identify a nitrosative-stress signaling pathway that engages ATM and the LKB1 and TSC2 tumor suppressors to repress mTORC1 and regulate autophagy. As cancer cells are particularly sensitive to nitrosative stress, these data open another path for therapies capitalizing on the ability of reactive nitrogen species to induce autophagy-mediated cell death.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Autofagia/efectos de los fármacos , Western Blotting , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células HeLa , Humanos , Células MCF-7 , Ratones , Ratones Noqueados , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/fisiología , Donantes de Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/efectos de los fármacos , Espermina/análogos & derivados , Espermina/metabolismo , Espermina/farmacología , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA