Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 607(7919): 571-577, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35794472

RESUMEN

Individuals can exhibit differences in metabolism that are caused by the interplay of genetic background, nutritional input, microbiota and other environmental factors1-4. It is difficult to connect differences in metabolism to genomic variation and derive underlying molecular mechanisms in humans, owing to differences in diet and lifestyle, among others. Here we use the nematode Caenorhabditis elegans as a model to study inter-individual variation in metabolism. By comparing three wild strains and the commonly used N2 laboratory strain, we find differences in the abundances of both known metabolites and those that have not to our knowledge been previously described. The latter metabolites include conjugates between 3-hydroxypropionate (3HP) and several amino acids (3HP-AAs), which are much higher in abundance in one of the wild strains. 3HP is an intermediate in the propionate shunt pathway, which is activated when flux through the canonical, vitamin-B12-dependent propionate breakdown pathway is perturbed5. We show that increased accumulation of 3HP-AAs is caused by genetic variation in HPHD-1, for which 3HP is a substrate. Our results suggest that the production of 3HP-AAs represents a 'shunt-within-a-shunt' pathway to accommodate a reduction-of-function allele in hphd-1. This study provides a step towards the development of metabolic network models that capture individual-specific differences of metabolism and more closely represent the diversity that is found in entire species.


Asunto(s)
Caenorhabditis elegans , Redes y Vías Metabólicas , Animales , Humanos , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Aminoácidos/metabolismo , Caenorhabditis elegans/clasificación , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ácido Láctico/análogos & derivados , Ácido Láctico/metabolismo , Redes y Vías Metabólicas/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Animales , Propionatos/metabolismo , Vitamina B 12/metabolismo
2.
Am J Hum Genet ; 110(8): 1377-1393, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37451268

RESUMEN

Phosphoinositides (PIs) are membrane phospholipids produced through the local activity of PI kinases and phosphatases that selectively add or remove phosphate groups from the inositol head group. PIs control membrane composition and play key roles in many cellular processes including actin dynamics, endosomal trafficking, autophagy, and nuclear functions. Mutations in phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] phosphatases cause a broad spectrum of neurodevelopmental disorders such as Lowe and Joubert syndromes and congenital muscular dystrophy with cataracts and intellectual disability, which are thus associated with increased levels of PI(4,5)P2. Here, we describe a neurodevelopmental disorder associated with an increase in the production of PI(4,5)P2 and with PI-signaling dysfunction. We identified three de novo heterozygous missense variants in PIP5K1C, which encodes an isoform of the phosphatidylinositol 4-phosphate 5-kinase (PIP5KIγ), in nine unrelated children exhibiting intellectual disability, developmental delay, acquired microcephaly, seizures, visual abnormalities, and dysmorphic features. We provide evidence that the PIP5K1C variants result in an increase of the endosomal PI(4,5)P2 pool, giving rise to ectopic recruitment of filamentous actin at early endosomes (EEs) that in turn causes dysfunction in EE trafficking. In addition, we generated an in vivo zebrafish model that recapitulates the disorder we describe with developmental defects affecting the forebrain, including the eyes, as well as craniofacial abnormalities, further demonstrating the pathogenic effect of the PIP5K1C variants.


Asunto(s)
Discapacidad Intelectual , Fosfatidilinositoles , Animales , Síndrome , Actinas , Pez Cebra/genética , Discapacidad Intelectual/genética , Monoéster Fosfórico Hidrolasas/genética , Fosfatos de Fosfatidilinositol
3.
Am J Hum Genet ; 109(10): 1923-1931, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36067766

RESUMEN

MTSS2, also known as MTSS1L, binds to plasma membranes and modulates their bending. MTSS2 is highly expressed in the central nervous system (CNS) and appears to be involved in activity-dependent synaptic plasticity. Variants in MTSS2 have not yet been associated with a human phenotype in OMIM. Here we report five individuals with the same heterozygous de novo variant in MTSS2 (GenBank: NM_138383.2: c.2011C>T [p.Arg671Trp]) identified by exome sequencing. The individuals present with global developmental delay, mild intellectual disability, ophthalmological anomalies, microcephaly or relative microcephaly, and shared mild facial dysmorphisms. Immunoblots of fibroblasts from two affected individuals revealed that the variant does not significantly alter MTSS2 levels. We modeled the variant in Drosophila and showed that the fly ortholog missing-in-metastasis (mim) was widely expressed in most neurons and a subset of glia of the CNS. Loss of mim led to a reduction in lifespan, impaired locomotor behavior, and reduced synaptic transmission in adult flies. Expression of the human MTSS2 reference cDNA rescued the mim loss-of-function (LoF) phenotypes, whereas the c.2011C>T variant had decreased rescue ability compared to the reference, suggesting it is a partial LoF allele. However, elevated expression of the variant, but not the reference MTSS2 cDNA, led to similar defects as observed by mim LoF, suggesting that the variant is toxic and may act as a dominant-negative allele when expressed in flies. In summary, our findings support that mim is important for appropriate neural function, and that the MTSS2 c.2011C>T variant causes a syndromic form of intellectual disability.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Malformaciones del Sistema Nervioso , Animales , ADN Complementario , Drosophila/genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Proteínas de la Membrana , Microcefalia/genética , Proteínas de Microfilamentos , Mutación Missense/genética , Malformaciones del Sistema Nervioso/genética , Fenotipo
4.
Proc Biol Sci ; 291(2026): 20241137, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38981525

RESUMEN

Torpor is widespread among bats presumably because most species are small, and torpor greatly reduces their high mass-specific resting energy expenditure, especially in the cold. Torpor has not been recorded in any bat species larger than 50 g, yet in theory could be beneficial even in the world's largest bats (flying-foxes; Pteropus spp.) that are exposed to adverse environmental conditions causing energy bottlenecks. We used temperature telemetry to measure body temperature in wild-living adult male grey-headed flying-foxes (P. poliocephalus; 799 g) during winter in southern Australia. We found that all individuals used torpor while day-roosting, with minimum body temperature reaching 27°C. Torpor was recorded following a period of cool, wet and windy weather, and on a day with the coldest maximum air temperature, suggesting it is an adaptation to reduce energy expenditure during periods of increased thermoregulatory costs and depleted body energy stores. A capacity for torpor among flying-foxes has implications for understanding their distribution, behavioural ecology and life history. Furthermore, our discovery increases the body mass of bats known to use torpor by more than tenfold and extends the documented use of this energy-saving strategy under wild conditions to all bat superfamilies, with implications for the evolutionary maintenance of torpor among bats and other mammals.


Asunto(s)
Quirópteros , Letargo , Animales , Quirópteros/fisiología , Letargo/fisiología , Masculino , Metabolismo Energético , Telemetría , Temperatura Corporal , Estaciones del Año , Australia del Sur
5.
J Inherit Metab Dis ; 47(4): 757-765, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38499449

RESUMEN

T cells have been shown to maintain a lower percentage (heteroplasmy) of the pathogenic m.3243A>G variant (MT-TL1, associated with maternally inherited diabetes and deafness [MIDD] and mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes [MELAS]). The mechanism(s) underlying this purifying selection, however, remain unknown. Here we report that purified patient memory CD4+ T cells have lower bulk m.3243A>G heteroplasmy compared to naïve CD4+ T cells. In vitro activation of naïve CD4+ m.3243A>G patient T cells results in lower bulk m.3243A>G heteroplasmy after proliferation. Finally, m.3243A>G patient T cell receptor repertoire sequencing reveals relative oligoclonality compared to controls. These data support a role for T cell activation in peripheral, purifying selection against high m.3243A>G heteroplasmy T cells at the level of the cell, in a likely cell-autonomous fashion.


Asunto(s)
Activación de Linfocitos , Síndrome MELAS , Humanos , Síndrome MELAS/genética , Linfocitos T CD4-Positivos/inmunología , Heteroplasmia/genética , ARN de Transferencia de Leucina/genética , Masculino , Femenino , ADN Mitocondrial/genética , Adulto
6.
Am J Hum Genet ; 107(2): 352-363, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32693025

RESUMEN

MORC2 encodes an ATPase that plays a role in chromatin remodeling, DNA repair, and transcriptional regulation. Heterozygous variants in MORC2 have been reported in individuals with autosomal-dominant Charcot-Marie-Tooth disease type 2Z and spinal muscular atrophy, and the onset of symptoms ranges from infancy to the second decade of life. Here, we present a cohort of 20 individuals referred for exome sequencing who harbor pathogenic variants in the ATPase module of MORC2. Individuals presented with a similar phenotype consisting of developmental delay, intellectual disability, growth retardation, microcephaly, and variable craniofacial dysmorphism. Weakness, hyporeflexia, and electrophysiologic abnormalities suggestive of neuropathy were frequently observed but were not the predominant feature. Five of 18 individuals for whom brain imaging was available had lesions reminiscent of those observed in Leigh syndrome, and five of six individuals who had dilated eye exams had retinal pigmentary abnormalities. Functional assays revealed that these MORC2 variants result in hyperactivation of epigenetic silencing by the HUSH complex, supporting their pathogenicity. The described set of morphological, growth, developmental, and neurological findings and medical concerns expands the spectrum of genetic disorders resulting from pathogenic variants in MORC2.


Asunto(s)
Adenosina Trifosfatasas/genética , Anomalías Craneofaciales/genética , Trastornos del Crecimiento/genética , Mutación/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Enfermedades Genéticas Congénitas/genética , Heterocigoto , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Microcefalia/genética , Persona de Mediana Edad , Fenotipo , Adulto Joven
7.
N Engl J Med ; 383(16): 1556-1563, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32786181

RESUMEN

Many mitochondrial diseases are caused by mutations in mitochondrial DNA (mtDNA). Patients' cells contain a mixture of mutant and nonmutant mtDNA (a phenomenon called heteroplasmy). The proportion of mutant mtDNA varies across patients and among tissues within a patient. We simultaneously assayed single-cell heteroplasmy and cell state in thousands of blood cells obtained from three unrelated patients who had A3243G-associated mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes. We observed a broad range of heteroplasmy across all cell types but also found markedly reduced heteroplasmy in T cells, a finding consistent with purifying selection within this lineage. We observed this pattern in six additional patients who had heteroplasmic A3243G without strokelike episodes. (Funded by the Marriott Foundation and others.).


Asunto(s)
ADN Mitocondrial/genética , Mutación , Polimorfismo Genético , Linfocitos T , Adulto , Genoma Mitocondrial , Humanos , Leucocitos Mononucleares , Síndrome MELAS/genética , Masculino , Persona de Mediana Edad
8.
Nucleic Acids Res ; 49(D1): D1541-D1547, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33174596

RESUMEN

The mammalian mitochondrial proteome is under dual genomic control, with 99% of proteins encoded by the nuclear genome and 13 originating from the mitochondrial DNA (mtDNA). We previously developed MitoCarta, a catalogue of over 1000 genes encoding the mammalian mitochondrial proteome. This catalogue was compiled using a Bayesian integration of multiple sequence features and experimental datasets, notably protein mass spectrometry of mitochondria isolated from fourteen murine tissues. Here, we introduce MitoCarta3.0. Beginning with the MitoCarta2.0 inventory, we performed manual review to remove 100 genes and introduce 78 additional genes, arriving at an updated inventory of 1136 human genes. We now include manually curated annotations of sub-mitochondrial localization (matrix, inner membrane, intermembrane space, outer membrane) as well as assignment to 149 hierarchical 'MitoPathways' spanning seven broad functional categories relevant to mitochondria. MitoCarta3.0, including sub-mitochondrial localization and MitoPathway annotations, is freely available at http://www.broadinstitute.org/mitocarta and should serve as a continued community resource for mitochondrial biology and medicine.


Asunto(s)
Bases de Datos de Proteínas , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Anotación de Secuencia Molecular , Proteoma/metabolismo , Animales , Teorema de Bayes , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Conjuntos de Datos como Asunto , Humanos , Internet , Aprendizaje Automático , Espectrometría de Masas , Ratones , Mitocondrias/genética , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/clasificación , Proteínas Mitocondriales/genética , Proteoma/clasificación , Proteoma/genética , Programas Informáticos
9.
J Obstet Gynaecol Can ; 45(7): 486-488, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37120146

RESUMEN

OBJECTIVES: Surgical training programs are starting to experiment with video-based assessment (VBA) of residents' technical skills. VBA may limit the effect of interpersonal bias on assessment scores. However, before VBA is implemented widely, stakeholders' perceptions ought to be explored, including potential benefits and challenges. METHODS: Using the qualitative methods of hermeneutical phenomenology, the authors explored both trainee and faculty educators' perspectives on VBA using semi-structured interviews. Participants were recruited from the Department of Obstetrics and Gynecology at the University of Toronto. Data underwent thematic analysis and was validated by the investigator and theoretical triangulation. RESULTS: The authors interviewed 9 physicians (5 faculty and 4 residents). Four dominant themes were identified, including advantages compared to traditional methods, the role of feedback and coaching, challenges integrating VBA, and considerations for implementation. CONCLUSIONS: Surgical trainees and faculty feel that VBA is a worthy tool to advance equity and fairness in assessment, but felt it was better as a vehicle for feedback and coaching. VBA cannot be used as a standalone assessment metric without additional evidence for its validity. If implemented, residency programs can use VBA as an adjunct to other evaluation measures to facilitate coaching, provide asynchronous feedback, and limit assessment bias.


Asunto(s)
Ginecología , Internado y Residencia , Laparoscopía , Obstetricia , Humanos , Competencia Clínica , Docentes Médicos , Ginecología/educación , Laparoscopía/educación , Obstetricia/educación , Investigación Cualitativa
10.
Hum Mol Genet ; 29(9): 1568-1579, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32356556

RESUMEN

The translocase of outer mitochondrial membrane (TOMM) complex is the entry gate for virtually all mitochondrial proteins and is essential to build the mitochondrial proteome. TOMM70 is a receptor that assists mainly in mitochondrial protein import. Here, we report two individuals with de novo variants in the C-terminal region of TOMM70. While both individuals exhibited shared symptoms including hypotonia, hyper-reflexia, ataxia, dystonia and significant white matter abnormalities, there were differences between the two individuals, most prominently the age of symptom onset. Both individuals were undiagnosed despite extensive genetics workups. Individual 1 was found to have a p.Thr607Ile variant while Individual 2 was found to have a p.Ile554Phe variant in TOMM70. To functionally assess both TOMM70 variants, we replaced the Drosophila Tom70 coding region with a Kozak-mini-GAL4 transgene using CRISPR-Cas9. Homozygous mutant animals die as pupae, but lethality is rescued by the mini-GAL4-driven expression of human UAS-TOMM70 cDNA. Both modeled variants lead to significantly less rescue indicating that they are loss-of-function alleles. Similarly, RNAi-mediated knockdown of Tom70 in the developing eye causes roughening and synaptic transmission defect, common findings in neurodegenerative and mitochondrial disorders. These phenotypes were rescued by the reference, but not the variants, of TOMM70. Altogether, our data indicate that de novo loss-of-function variants in TOMM70 result in variable white matter disease and neurological phenotypes in affected individuals.


Asunto(s)
Predisposición Genética a la Enfermedad , Leucoencefalopatías/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Enfermedades del Sistema Nervioso/genética , Edad de Inicio , Ataxia/genética , Ataxia/patología , Niño , Distonía/genética , Distonía/patología , Femenino , Humanos , Leucoencefalopatías/patología , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Enfermedades del Sistema Nervioso/patología , Reflejo Anormal/genética
12.
Am J Med Genet A ; 188(9): 2760-2765, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35781780

RESUMEN

MEGD(H)EL syndrome is a rare autosomal recessive disorder caused by mutations in SERAC1, a protein necessary for phosphatidylglycerol remodeling. It is characterized by 3-methylglutaconic aciduria, deafness-dystonia, (hepatopathy), encephalopathy, and Leigh-like syndrome, but has a wide spectrum of severity. Here, we present a case of a child with MEGD(H)EL syndrome with infantile hepatopathy, neurodevelopmental delays, characteristic biochemical abnormalities, and biallelic novel SERAC1 mutations: (1) deletion of (at least) exons 2-4, pathogenic; and (2) c.1601A>T (p.H534L), likely pathogenic. Her initial clinical presentation was notable for persistently elevated transaminases, speech delay, delayed motor milestones, and sensorineural hearing loss. However, her verbal and motor development has progressively improved and now, at 4 years of age, she has only speech and mild gross motor delays as compared to her unaffected peers and is exceeding clinical expectations. The histologic features of a liver biopsy are described, which has not previously been published in detail for this syndrome. Hepatocytes showed granular cytoplasm and fine intracytoplasmic lipid droplets. The ultrastructural findings included abnormal circular mitochondrial cristae. These findings are consistent with a mitochondrial disorder.


Asunto(s)
Pérdida Auditiva Sensorineural , Hepatopatías , Errores Innatos del Metabolismo , Hidrolasas de Éster Carboxílico/genética , Niño , Contractura , Femenino , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/genética , Histiocitosis , Humanos , Hepatopatías/genética , Errores Innatos del Metabolismo/genética , Síndrome
13.
J Inherit Metab Dis ; 45(5): 996-1012, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35621276

RESUMEN

Mitochondrial complex V plays an important role in oxidative phosphorylation by catalyzing the generation of ATP. Most complex V subunits are nuclear encoded and not yet associated with recognized Mendelian disorders. Using exome sequencing, we identified a rare homozygous splice variant (c.87+3A>G) in ATP5PO, the complex V subunit which encodes the oligomycin sensitivity conferring protein, in three individuals from two unrelated families, with clinical suspicion of a mitochondrial disorder. These individuals had a similar, severe infantile and often lethal multi-systemic disorder that included hypotonia, developmental delay, hypertrophic cardiomyopathy, progressive epileptic encephalopathy, progressive cerebral atrophy, and white matter abnormalities on brain MRI consistent with Leigh syndrome. cDNA studies showed a predominant shortened transcript with skipping of exon 2 and low levels of the normal full-length transcript. Fibroblasts from the affected individuals demonstrated decreased ATP5PO protein, defective assembly of complex V with markedly reduced amounts of peripheral stalk proteins, and complex V hydrolytic activity. Further, expression of human ATP5PO cDNA without exon 2 (hATP5PO-∆ex2) in yeast cells deleted for yATP5 (ATP5PO homolog) was unable to rescue growth on media which requires oxidative phosphorylation when compared to the wild type construct (hATP5PO-WT), indicating that exon 2 deletion leads to a non-functional protein. Collectively, our findings support the pathogenicity of the ATP5PO c.87+3A>G variant, which significantly reduces but does not eliminate complex V activity. These data along with the recent report of an affected individual with ATP5PO variants, add to the evidence that rare biallelic variants in ATP5PO result in defective complex V assembly, function and are associated with Leigh syndrome.


Asunto(s)
Encefalopatías , Enfermedad de Leigh , ATPasas de Translocación de Protón Mitocondriales , Encefalopatías/metabolismo , ADN Complementario/metabolismo , Humanos , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , Mutación , Proteínas/metabolismo
14.
Genet Med ; 23(10): 1873-1881, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34113002

RESUMEN

PURPOSE: Phosphatidylinositol Glycan Anchor Biosynthesis, class G (PIGG) is an ethanolamine phosphate transferase catalyzing the modification of glycosylphosphatidylinositol (GPI). GPI serves as an anchor on the cell membrane for surface proteins called GPI-anchored proteins (GPI-APs). Pathogenic variants in genes involved in the biosynthesis of GPI cause inherited GPI deficiency (IGD), which still needs to be further characterized. METHODS: We describe 22 individuals from 19 unrelated families with biallelic variants in PIGG. We analyzed GPI-AP surface levels on granulocytes and fibroblasts for three and two individuals, respectively. We demonstrated enzymatic activity defects for PIGG variants in vitro in a PIGG/PIGO double knockout system. RESULTS: Phenotypic analysis of reported individuals reveals shared PIGG deficiency-associated features. All tested GPI-APs were unchanged on granulocytes whereas CD73 level in fibroblasts was decreased. In addition to classic IGD symptoms such as hypotonia, intellectual disability/developmental delay (ID/DD), and seizures, individuals with PIGG variants of null or severely decreased activity showed cerebellar atrophy, various neurological manifestations, and mitochondrial dysfunction, a feature increasingly recognized in IGDs. Individuals with mildly decreased activity showed autism spectrum disorder. CONCLUSION: This in vitro system is a useful method to validate the pathogenicity of variants in PIGG and to study PIGG physiological functions.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Humanos , Proteínas de la Membrana , Linaje , Convulsiones , Virulencia
15.
Semin Neurol ; 41(3): 303-308, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33663004

RESUMEN

Hereditary myelopathies are an important and likely underappreciated component of neurogenetic disease. While previously distinctions have been made by age of onset, the growing power and availability of high-quality neuroimaging and next-generation sequencing are increasingly expanding classical phenotypes and diminishing the utility of age-based classifications. Increasingly, cases of "atypical" disease presentations are challenging past assumptions regarding the age of onset and survival in many disorders and identifying allelic syndromes in others. Despite this, there is poor awareness of the potential for spinal involvement in many diseases that typically affect the brain. Broadly speaking, congenital myelopathies can be neuroanatomically grouped into motor neuron, axonopathy, spinocerebellar, cerebroleukodystrophy, and pan-neuraxis (generally central nervous system predominant with associated axonopathy) disorders.Here, we review hereditary causes of myelopathy, organized by neuroanatomy, and highlight atypical presentations. We discuss findings concerning an underlying genetic etiology for myelopathy, as well as practical, technical, and ethical considerations of diagnostic genetic testing.


Asunto(s)
Enfermedades de la Médula Espinal , Sistema Nervioso Central , Pruebas Genéticas , Humanos , Neuroimagen , Enfermedades de la Médula Espinal/genética
17.
Hepatology ; 69(5): 2048-2060, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30578687

RESUMEN

Treatment options for patients with advanced biliary tract cancer are limited. Dysregulation of the immune system plays an important role in the pathogenesis of biliary tract cancer (BTC). This study aimed to investigate whether tremelimumab, an anti-CTLA4 (cytotoxic T-lymphocyte-associated protein 4) inhibitor, could be combined safely with microwave ablation to enhance the effect of anti-CTLA4 treatment in patients with advanced BTC. Patients were enrolled to receive monthly tremelimumab (10 mg/kg, intravenously) for six doses, followed by infusions every 3 months until off-treatment criteria were met. Thirty-six days after the first tremelimumab dose, patients underwent subtotal microwave ablation. Interval imaging studies were performed every 8 weeks. Adverse events (AEs) were noted and managed. Tumor and peripheral blood samples were collected to perform immune monitoring and whole-exome sequencing (WES). Twenty patients with refractory BTC were enrolled (median age, 56.5 years). No dose-limiting toxicities were encountered. The common treatment-related AEs included lymphopenia, diarrhea, and elevated transaminases. Among 16 patients evaluable for efficacy analysis, 2 (12.5%) patients achieved a confirmed partial response (lasting for 8.0 and 18.1 months, respectively) and 5 patients (31.3%) achieved stable disease. Median progression free survival (PFS) and overall survival (OS) were 3.4 months (95% confidence interval [CI], 2.5-5.2) and 6.0 months (95% CI, 3.8-8.8), respectively. Peripheral blood immune cell subset profiling showed increased circulating activated human leukocyte antigen, DR isotype ([HLA-DR] positive) CD8+ T cells. T-cell receptor (TCR)ß screening showed tremelimumab expanded TCR repertoire, but not reaching statistical significance (P = 0.057). Conclusion: Tremelimumab in combination with tumor ablation is a potential treatment strategy for patients with advanced BTC. Increased circulating activated CD8+ T cells and TCR repertoire expansion induced by tremelimumab may contribute to treatment benefit.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Antineoplásicos/administración & dosificación , Neoplasias del Sistema Biliar/tratamiento farmacológico , Carcinoma/tratamiento farmacológico , Microondas/uso terapéutico , Adulto , Anciano , Neoplasias del Sistema Biliar/inmunología , Carcinoma/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Terapia por Radiofrecuencia , Resultado del Tratamiento
18.
J Immunol ; 201(9): 2641-2653, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30282750

RESUMEN

Generation of protective immune responses requires coordinated stimulation of innate and adaptive immune responses. An important mediator of innate immunity is stimulator of IFN genes (STING, MPYS, MITA), a ubiquitously but differentially expressed adaptor molecule that functions in the relay of signals initiated by sensing of cytosolic DNA and bacterial cyclic dinucleotides (CDNs). Whereas systemic expression of STING is required for CDN-aided mucosal Ab responses, its function in B cells in particular is unclear. In this study, we show that B cells can be directly activated by CDNs in a STING-dependent manner in vitro and in vivo. Direct activation of B cells by CDNs results in upregulation of costimulatory molecules and cytokine production and this can be accompanied by caspase-dependent cell death. CDN-induced cytokine production by B cells and other cell types also contributes to activation and immune responses. Type I IFN is primarily responsible for this indirect stimulation although other cytokines may contribute. BCR and STING signaling pathways act synergistically to promote Ab responses independent of type I IFN. B cell expression of STING is required for optimal in vivo IgG and mucosal IgA Ab responses induced by T cell-dependent Ags and cyclic-di-GMP but plays no discernable role in Ab responses in which alum is used as an adjuvant. Thus, STING functions autonomously in B cells responding to CDNs, and its activation synergizes with Ag receptor signals to promote B cell activation.


Asunto(s)
Formación de Anticuerpos/inmunología , Linfocitos B/inmunología , Activación de Linfocitos/inmunología , Proteínas de la Membrana/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Alarminas/inmunología , Animales , Antígenos Bacterianos/inmunología , Ratones , Nucleótidos Cíclicos/inmunología , Transducción de Señal/inmunología
19.
Forensic Sci Med Pathol ; 16(3): 540-543, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32125629

RESUMEN

The carcass of a 15-year-old female Bottlenose dolphin (Tursiops aduncus) was retrieved from the Port River near Adelaide, South Australia, Australia. The animal was emaciated with five thick nylon fishing lines emerging from the oropharynx attached to a tangle of nylon and monofilament fishing line that also contained wire and eight fishing hooks. The mouth had been cut by the line and a circumferential curvilinear superficial abrasion/indentation from fishing line encircled the entire distal rostrum. Dissection of the upper aerodigestive tract revealed a large fish hook embedded in the lower blowhole associated with an adjacent abscess at the base of the epiglottis. The stomach contained two unattached fish hooks, parts of a plastic squid lure and two heavy duty work gloves. Further examination revealed a severe necrotising pneumonia with microabscesses in the kidneys and adrenal glands with scattered thromboemboli in keeping with terminal disseminated intravascular coagulation. Death had resulted from septic complications of fishing hook impalement and line entanglement with inanition. The case provides a graphic illustration of the effects of entanglement and fishing hook penetration, as well as ingestion of non-degradable plastic materials, in a free living Bottlenose dolphin.


Asunto(s)
Delfín Mular , Heridas Penetrantes/patología , Animales , Australia , Sepsis/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA