Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biomedicines ; 11(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37371709

RESUMEN

Tumor-derived exosomes play a multifaceted role in preparing the pre-metastatic niche, promoting cancer dissemination, and regulating cancer cell dormancy. A brief review of three types of cells implicated in metastasis and an overview of other types of extracellular vesicles related to metastasis are described. A central focus of this review is on how exosomes influence cancer progression throughout metastatic disease. Exosomes are crucial mediators of intercellular communication by transferring their cargo to recipient cells, modulating their behavior, and promoting tumor pro-gression. First, their functional role in cancer cell dissemination in the peripheral blood by facilitating the establishment of a pro-angiogenic and pro-inflammatory niche is described during organotro-pism and in lymphatic-mediated metastasis. Second, tumor-derived exosomes can transfer molecular signals that induce cell cycle arrest, dormancy, and survival pathways in disseminated cells, promoting a dormant state are reviewed. Third, several studies highlight exosome involvement in maintaining cellular dormancy in the bone marrow endosteum. Finally, the clinical implications of exosomes as biomarkers or diagnostic tools for cancer progression are also outlined. Understanding the complex interplay between tumor-derived exosomes and the pre-metastatic niche is crucial for developing novel therapeutic strategies to target metastasis and prevent cancer recurrence. To that end, several examples of how exosomes or other nanocarriers are used as a drug delivery system to inhibit cancer metastasis are discussed. Strategies are discussed to alter exosome cargo content for better loading capacity or direct cell targeting by integrins. Further, pre-clinical models or Phase I clinical trials implementing exosomes or other nanocarriers to attack metastatic cancer cells are highlighted.

2.
J Extracell Vesicles ; 12(2): e12305, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36775986

RESUMEN

Extracellular vesicles (EVs) carry diverse bioactive components including nucleic acids, proteins, lipids and metabolites that play versatile roles in intercellular and interorgan communication. The capability to modulate their stability, tissue-specific targeting and cargo render EVs as promising nanotherapeutics for treating heart, lung, blood and sleep (HLBS) diseases. However, current limitations in large-scale manufacturing of therapeutic-grade EVs, and knowledge gaps in EV biogenesis and heterogeneity pose significant challenges in their clinical application as diagnostics or therapeutics for HLBS diseases. To address these challenges, a strategic workshop with multidisciplinary experts in EV biology and U.S. Food and Drug Administration (USFDA) officials was convened by the National Heart, Lung and Blood Institute. The presentations and discussions were focused on summarizing the current state of science and technology for engineering therapeutic EVs for HLBS diseases, identifying critical knowledge gaps and regulatory challenges and suggesting potential solutions to promulgate translation of therapeutic EVs to the clinic. Benchmarks to meet the critical quality attributes set by the USFDA for other cell-based therapeutics were discussed. Development of novel strategies and approaches for scaling-up EV production and the quality control/quality analysis (QC/QA) of EV-based therapeutics were recognized as the necessary milestones for future investigations.


Asunto(s)
Vesículas Extracelulares , Ácidos Nucleicos , Estados Unidos , Vesículas Extracelulares/metabolismo , Comunicación Celular , Ácidos Nucleicos/metabolismo , Pulmón/metabolismo , Sueño
3.
J Proteome Res ; 11(3): 1591-7, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22289114

RESUMEN

Intracellular proteins are in a state of flux, continually being degraded into amino acids and resynthesized into new proteins. The rate of this biochemical recycling process varies across proteins and is emerging as an important consideration in drug discovery and development. Here, we developed a triple-stage quadrupole mass spectrometry assay based on product ion measurements at unit resolution and H(2)(18)O stable tracer incorporation to measure relative protein synthesis rates. As proof of concept, we selected to measure the relative in vivo synthesis rate of ApoB100, an apolipoprotein where elevated levels are associated with an increased risk of coronary heart disease, in plasma-isolated very low density lipoprotein (VLDL) and low density lipoprotein (LDL) in a mouse in vivo model. In addition, serial time points were acquired to measure the relative in vivo synthesis rate of mouse LDL ApoB100 in response to vehicle, microsomal triacylglycerol transfer protein (MTP) inhibitor, and site-1 protease inhibitor, two potential therapeutic targets to reduce plasma ApoB100 levels at 2 and 6 h post-tracer-injection. The combination of H(2)(18)O tracer with the triple quadrupole mass spectrometry platform creates an assay that is relatively quick and inexpensive to transfer across different biological model systems, serving as an ideal rapid screening tool for relative protein synthesis in response to treatment.


Asunto(s)
Marcaje Isotópico/métodos , Biosíntesis de Proteínas , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Animales , Apolipoproteína B-100/biosíntesis , Apolipoproteína B-100/aislamiento & purificación , Perros , Humanos , Lipoproteínas LDL/sangre , Lipoproteínas LDL/aislamiento & purificación , Lipoproteínas VLDL/sangre , Lipoproteínas VLDL/aislamiento & purificación , Masculino , Ratones , Ratones Transgénicos , Oligopéptidos/química , Isótopos de Oxígeno , Espectrometría de Masas en Tándem/normas
4.
Anal Chem ; 84(15): 6891-8, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22788854

RESUMEN

D-dimer is a product of the coagulation cascade and is associated with venous thromboembolism, disseminated intravascular coagulation, and additional clinical conditions. Despite its importance, D-dimer measurement has limited clinical utility due in part to the lack of reliable assays. The difficulty in developing an immunoassay that is specific for D-dimer arises from the inherent heterogeneity in its structure. In this report, we describe a highly specific method for the quantification of D-dimer level in human plasma. In our method, the reciprocally cross-linked peptide resulting from factor XIIIa-catalyzed dimerization of fibrin γ chains was selected to represent the D-dimer antigen. Using an antipeptide antibody, we enriched the cross-linked peptide from trypsin-digested plasma prior to quantitative analysis with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The assay has a quantitative range of 500 pmol/L to 100 nmol/L in human plasma. In further characterization of the assay, we found that it exhibited good correlation with fibrinolytic activity in human donors and with thrombin generation and clot strength in an in vitro thromboelastography assay. These observations thus establish the biological relevance of the assay and suggest it may be a valuable biomarker in characterization and treatment of blood coagulation disorders.


Asunto(s)
Productos de Degradación de Fibrina-Fibrinógeno/análisis , Péptidos/aislamiento & purificación , Espectrometría de Masas en Tándem , Anticuerpos/inmunología , Cromatografía de Afinidad , Cromatografía Líquida de Alta Presión , Ensayo de Inmunoadsorción Enzimática , Factor XIII/metabolismo , Humanos , Marcaje Isotópico , Péptidos/inmunología , Trombina/metabolismo
5.
Elife ; 112022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35880738

RESUMEN

In the interest of advocating for the postdoctoral community in the United States (US), we compared the results of surveys of postdocs carried out in 2019 and in late 2020. We found that respondents' mental health and wellness were significantly impacted by the pandemic irrespective of their gender, race, citizenship, or other identities. Career trajectories and progression were also affected, as respondents reported being less confident about achieving career goals, and having more negative perceptions of the job market compared to before the pandemic. Postdocs working in the US on temporary visas reported experiencing increased stress levels due to changes in immigration policy. Access to institutional Postdoctoral Offices or Associations positively impacted well-being and helped mitigate some of the personal and professional stresses caused by the pandemic.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Identidad de Género , Humanos , Pandemias , Investigadores , Encuestas y Cuestionarios , Estados Unidos/epidemiología
6.
Cancers (Basel) ; 13(14)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34298673

RESUMEN

PURPOSE: To understand how tumor cells alter macrophage biology once they are recruited to triple-negative breast cancer (TNBC) tumors by CCL5. METHOD: Mouse bone marrow derived macrophage (BMDMs) were isolated and treated with recombinant CCL5 protein alone, with tumor cell conditioned media, or with tumor extracellular vesicles (EVs). Media from these tumor EV-educated macrophages (TEMs) was then used to determine how these macrophages affect TNBC invasion. To understand the mechanism, we assayed the cytokine secretion from these macrophages to determine how they impact tumor cell invasion. Tumor CCL5 expression was varied in tumors to determine its role in regulating macrophage biology through EVs. RESULTS: Tumor EVs are a necessary component for programming naïve macrophages toward a pro-metastatic phenotype. CCL5 expression in the tumor cells regulates both EV biogenesis/secretion/cargo and macrophage EV-education toward a pro-metastatic phenotype. Analysis of the tumor EV-educated macrophages (TEMs) showed secretion of a variety of factors including CXCL1, CTLA-4, IFNG, OPN, HGF, TGFB, and CCL19 capable of remodeling the surrounding tumor stroma and immune infiltrate. Injection of tumor cells with macrophages educated by metastatic tumor cell EVs into mice increased tumor metastasis to the lung. CONCLUSION: These results demonstrate that tumor-derived EVs are key mediators of macrophage education and likely play a more complex role in modulating tumor therapeutic response by regulating the tumor immune infiltrate.

7.
Front Pharmacol ; 10: 134, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30853911

RESUMEN

Glioblastoma multiforme (GBM) is a fatal malignancy of the central nervous system, commonly associated with chemoresistance. The alkylating agent Temozolomide (TMZ) is the front-line chemotherapeutic agent and has undergone intense studies on resistance. These studies reported on mismatch repair gene upregulation, ABC-targeted drug efflux, and cell cycle alterations. The mechanism by which TMZ induces cell cycle arrest has not been well-established. TMZ-resistant GBM cells have been linked to microRNA (miRNA) and exosomes. A cell cycle miRNA array identified distinct miRNAs only in exosomes from TMZ-resistant GBM cell lines and primary spheres. We narrowed the miRs to miR-93 and -193 and showed in computational analyses that they could target Cyclin D1. Since Cyclin D1 is a major regulator of cell cycle progression, we performed cause-effect studies and showed a blunting effects of miR-93 and -193 in Cyclin D1 expression. These two miRs also decreased cell cycling quiescence and induced resistance to TMZ. Taken together, our data provide a mechanism by which GBM cells can exhibit TMZ-induced resistance through miRNA targeting of Cyclin D1. The data provide a number of therapeutic approaches to reverse chemoresistance at the miRNA, exosomal and cell cycle points.

8.
Cell Death Dis ; 10(2): 59, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30683851

RESUMEN

Breast cancer (BC) cells (BCCs) can retain cellular quiescence for decades, a phenomenon referred to as dormancy. BCCs show preference for the bone marrow (BM) where they can remain dormant for decades. Targeting BCCs within the BM is a challenge since the dormant BCCs reside within BM stroma, also residence for hematopoietic stem cells (HSCs). Dormant BCCs could behave as cancer stem cells (CSCs). The CSCs and HSCs are similar by function and also, by commonly expressed genes. The method by which dormant BCCs transition into clinically metastatic cells remains unclear. This study tested the hypothesis that macrophages (MΦs) within BM stroma, facilitates dormancy or reverse this state into metastatic cells. MΦs exhibiting an M2 phenotype constitute ~10% of cultured BM stroma. The M2 MΦs form gap junctional intercellular communication (GJIC) with CSCs, resulting in cycling quiescence, reduced proliferation and carboplatin resistance. In contrast, MΦs expressing the M1 phenotype reversed BC dormancy. Activation of M2a MΦs via the toll-like receptor 4 (TLR4) switched to M1 phenotype. The switch can occur by direct activation of M2a MΦs, or indirectly through activation of mesenchymal stem cells. M1 MΦ-derived exosomes activated NFкB to reverse quiescent BCCs to cycling cells. Using an in vivo model of BC dormancy, injected Mi MOs sensitized BCCs to carboplatin and increased host survival. In summary, we have shown how BM stromal MΦs, through exosomes, regulate the behavior of BCCs, by either inducing or reversing dormancy.


Asunto(s)
Médula Ósea/patología , Neoplasias de la Mama/patología , Comunicación Celular , Exosomas/metabolismo , Macrófagos/metabolismo , Células Madre Neoplásicas/metabolismo , Adolescente , Adulto , Animales , Neoplasias de la Mama/tratamiento farmacológico , Carboplatino/uso terapéutico , Células Cultivadas , Técnicas de Cocultivo , Resistencia a Antineoplásicos , Femenino , Uniones Comunicantes , Xenoinjertos , Humanos , Macrófagos/clasificación , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Receptor Toll-Like 4/metabolismo , Adulto Joven
9.
Stem Cell Rev Rep ; 13(5): 644-658, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28733800

RESUMEN

Orthotopic liver transplant (OLT) remains the standard of care for end stage liver disease. To circumvent allo-rejection, OLT subjects receive gluococorticoids (GC). We investigated the effects of GC on endogenous mesenchymal stem (stromal) cells (MSCs) in OLT. This question is relevant because MSCs have regenerative potential and immune suppressor function. Phenotypic analyses of blood samples from 12 OLT recipients, at pre-anhepatic, anhepatic and post-transplant (2 h, Days 1 and 5) indicated a significant decrease in MSCs after GC injection. The MSCs showed better recovery in the blood from subjects who started with relatively low MSCs as compared to those with high levels at the prehepatic phase. This drop in MSCs appeared to be linked to GC since similar change was not observed in liver resection subjects. In order to understand the effects of GC on decrease MSC migration, in vitro studies were performed in transwell cultures. Untreated MSCs could not migrate towards the GC-exposed liver tissue, despite CXCR4 expression and the production of inflammatory cytokines from the liver cells. GC-treated MSCs were inefficient with respect to migration towards CXCL12, and this correlated with retracted cytoskeleton and motility. These dysfunctions were partly explained by decreases in the CXCL12/receptor axis. GC-associated decrease in MSCs in OLT recipients recovered post-transplant, despite poor migratory ability towards GC-exposed liver. In total, the study indicated that GC usage in transplant needs to be examined to determine if this could be reduced or avoided with adjuvant cell therapy.


Asunto(s)
Enfermedad Hepática en Estado Terminal/cirugía , Rechazo de Injerto/prevención & control , Inmunosupresores/farmacología , Trasplante de Hígado , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/efectos de los fármacos , Metilprednisolona/farmacología , Estudios de Casos y Controles , Recuento de Células , Movimiento Celular/efectos de los fármacos , Quimiocina CXCL12/genética , Quimiocina CXCL12/inmunología , Enfermedad Hepática en Estado Terminal/genética , Enfermedad Hepática en Estado Terminal/inmunología , Enfermedad Hepática en Estado Terminal/patología , Regulación de la Expresión Génica , Rechazo de Injerto/inmunología , Rechazo de Injerto/patología , Humanos , Hígado/metabolismo , Hígado/patología , Hígado/cirugía , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/patología , Cultivo Primario de Células , Receptores CXCR4/genética , Receptores CXCR4/inmunología , Recuperación de la Función/fisiología , Transducción de Señal
10.
Cancer Lett ; 380(1): 289-95, 2016 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-26582656

RESUMEN

The tumor microenvironment has a critical role in the survival and decision of the cancer cells. These include support by enhanced angiogenesis, and metastasis or adaptation of dormancy. This article discusses methods by which the microenvironment sustains the tumor. This process is important as it will identify avenues of drug targets. Non-coding RNAs (ncRNAs) are evolving as key mediators in the interaction between the cancer cells and the microenvironment. Thus, the question is how to develop methods to effectively block the effects of the ncRNA and/or to introduce them to prevent metastasis, dormancy or to reverse dormancy. We focused on the advantages of using mesenchymal stem cells (MSCs) for RNA delivery. MSCs can be available as "off-the-shelf" cells. Thus far, MSCs are shown to be safe when transplanted across allogeneic barriers. We discussed the various methods by which MSCs can interact with cancer cells to deliver ncRNA or antagomirs. We also include the advances and possible confounds of using these methods. Overall, this review article provides a potential method by which MSCs can be used for effective delivery of nucleic acid to treat cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Comunicación Celular , Células Madre Mesenquimatosas/metabolismo , Células Madre Neoplásicas/metabolismo , ARN no Traducido/metabolismo , Microambiente Tumoral , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Exosomas/metabolismo , Femenino , Uniones Comunicantes/metabolismo , Regulación Neoplásica de la Expresión Génica , Terapia Genética/métodos , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Neoplásicas/patología , Fenotipo , ARN no Traducido/genética , Transducción de Señal
11.
Cancer Lett ; 380(1): 263-71, 2016 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-26546045

RESUMEN

Despite the success in detecting breast cancer (BC) early and, with aggressive therapeutic intervention, BC remains a clinical problem. The bone marrow (BM) is a favorable metastatic site for breast cancer cells (BCCs). In BM, the survival of BCCs is partly achieved by the supporting microenvironment, including the presence of immune suppressive cells such as mesenchymal stem cells (MSCs). The heterogeneity of BCCs brings up the question of how each subset interacts with the BM microenvironment. The cancer stem cells (CSCs) survive in the BM as cycling quiescence cells and, forming gap junctional intercellular communication (GJIC) with the hematopoietic supporting stromal cells and MSCs. This type of communication has been identified close to the endosteum. Additionally, dormancy can occur by soluble mediators such as cytokines and also by the exchange of exosomes. These latter mechanisms are reviewed in the context of metastasis of BC to the BM for transition as dormant cells. The article also discusses how immune cells such as macrophages and regulatory T-cells facilitate BC dormancy. The challenges of studying BC dormancy in 2-dimensional (2-D) system are also incorporated by proposing 3-D system by engineering methods to recapitulate the BM microenvironment.


Asunto(s)
Células de la Médula Ósea/patología , Neoplasias de la Médula Ósea/secundario , Neoplasias de la Mama/patología , Proliferación Celular , Células Madre Neoplásicas/patología , Microambiente Tumoral , Animales , Antineoplásicos/uso terapéutico , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Neoplasias de la Médula Ósea/tratamiento farmacológico , Neoplasias de la Médula Ósea/inmunología , Neoplasias de la Médula Ósea/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Comunicación Celular , Supervivencia Celular , Resistencia a Antineoplásicos , Femenino , Humanos , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/metabolismo , Transducción de Señal
12.
Breast Cancer (Auckl) ; 9(Suppl 2): 35-43, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26568682

RESUMEN

Immunotherapy for cancer has been a focus 50 years ago. At the time, this treatment was developed prior to cloning of the cytokines, no knowledge of regulatory T-cells, and very little information that mesenchymal stem cells (MSCs) (originally colony forming unit-fibroblasts [CFU-F]) could be licensed by the inflammatory microenvironment to suppress an immune response. Given the information available at that time, mononuclear cells from the peripheral blood were activated ex vivo and then replaced in the patients with tumor. The intent was to harness these activated immune cells to target the cancer cells. These studies did not lead to long-term responses because the activated cells when reinfused into the patients were an advantage to the resident MSCs, which can home the tumor and then become suppressive in the presence of the immune cells. The immune suppression caused by MSCs would also expand regulatory T-cells, resulting instead in tumor protection. As time progressed, these different fields converged into a new approach to use immunotherapy for cancer. This article discusses these approaches and also reviews chimeric antigen receptor in the context of future treatments for solid tumors, including breast cancer.

13.
Cancer Lett ; 367(1): 69-75, 2015 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-26208431

RESUMEN

Chemotherapeutic resistance can occur by P-glycoprotein (P-gp), a 12-transmembrane ATP-dependent drug efflux pump. Glioblastoma (GBM) has poor survival rate and uniformly acquired chemoresistance to its frontline agent, Temozolomide (TMZ). Despite much effort, overcoming TMZ resistance remains a challenge. We reported on autonomous induction of TMZ resistance by increased transcription MDR1, the gene for P-gp. This study investigated how P-gp and TMZ interact to gain resistance. Using an experimental model of Adriamycin-resistant DC3F cells (DC3F/Adx), we showed that increased P-gp caused TMZ resistance. Increasing concentrations of TMZ competed with Calcein for P-gp, resulting in reduced efflux in the DC3F/Adx cells. Three different inhibitors of P-gp reversed the resistance to TMZ in two different GBM cell lines, by increasing active Caspase 3. Molecular modeling predicted the binding sites to be the intracellular region of P-gp and also identified specific amino acids and kinetics of energy for the efflux of TMZ. Taken together, we confirmed P-gp targeting of TMZ, a crucial regulator of TMZ resistance in GBM. This study provides insights on the effectiveness by which TMZ competes with other P-gp substrates, thereby opening the door for combined targeted therapies.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/metabolismo , Dacarbazina/análogos & derivados , Resistencia a Antineoplásicos , Glioblastoma/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Antineoplásicos Alquilantes/metabolismo , Unión Competitiva , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Caspasa 3/metabolismo , Línea Celular Tumoral , Cricetinae , Dacarbazina/metabolismo , Dacarbazina/farmacología , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/efectos de los fármacos , Fluoresceínas/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Humanos , Temozolomida , Transcripción Genética , Activación Transcripcional , Transfección , Regulación hacia Arriba
14.
Artículo en Inglés | MEDLINE | ID: mdl-27158638

RESUMEN

Chemotherapy with Temozolomide (TMZ), radiation and surgery are the primary methods to treat Glioblastoma Multiforme (GBM), the most common adult intracranial tumor with dismal outcome. GBM resistance to therapy is the main reason of poor patient outcomes. Thus, methods to overcome the resistance are an area of extensive research. This highlight focuses on three recently published articles on the mechanism of resistance and possible therapeutic intervention, including RNA treatment with stem cells. We showed a crucial role of the developmental Sonic Hedgehog (SHH) pathway in the acquisition and maintenance of TMZ resistance. SHH signaling caused TMZ resistance in GBM cells through an increase in the multiple drug resistance gene (MDR1). The SHH receptor, Patched-1 (PTCH1), negatively regulate SHH signaling. In GBM, miR-9 suppressed PTCH1 levels, resulting in the activation of SHH pathway. Thus, SHH signaling is independent of the ligand in resistant GBM cells. MiR-9 was also increased in chemoresistance CD133+ GBM cells. A potential method to reverse resistance was tested by delivering the anti-miR in bone marrow-derived Mesenchymal Stem Cells (MSCs). The anti-miR-9 was transferred into the resistant GBM cells through exosomes and gap junctional intercellular communication. We also review on-going clinical trials with inhibitor of SHH signaling, and also discuss drug delivery by cell therapy for GBM. While GBM treatment has proven to be a challenge, there are a number of novel approaches we are currently developing to manage this malignancy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA