Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(1): 82-95, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38035881

RESUMEN

Autosomal-dominant ataxia with sensory and autonomic neuropathy is a highly specific combined phenotype that we described in two Swedish kindreds in 2014; its genetic cause had remained unknown. Here, we report the discovery of exonic GGC trinucleotide repeat expansions, encoding poly-glycine, in zinc finger homeobox 3 (ZFHX3) in these families. The expansions were identified in whole-genome datasets within genomic segments that all affected family members shared. Non-expanded alleles carried one or more interruptions within the repeat. We also found ZFHX3 repeat expansions in three additional families, all from the region of Skåne in southern Sweden. Individuals with expanded repeats developed balance and gait disturbances at 15 to 60 years of age and had sensory neuropathy and slow saccades. Anticipation was observed in all families and correlated with different repeat lengths determined through long-read sequencing in two family members. The most severely affected individuals had marked autonomic dysfunction, with severe orthostatism as the most disabling clinical feature. Neuropathology revealed p62-positive intracytoplasmic and intranuclear inclusions in neurons of the central and enteric nervous system, as well as alpha-synuclein positivity. ZFHX3 is located within the 16q22 locus, to which spinocerebellar ataxia type 4 (SCA4) repeatedly had been mapped; the clinical phenotype in our families corresponded well with the unique phenotype described in SCA4, and the original SCA4 kindred originated from Sweden. ZFHX3 has known functions in neuronal development and differentiation n both the central and peripheral nervous system. Our findings demonstrate that SCA4 is caused by repeat expansions in ZFHX3.


Asunto(s)
Ataxia Cerebelosa , Ataxias Espinocerebelosas , Degeneraciones Espinocerebelosas , Humanos , Expansión de Repetición de Trinucleótido/genética , Ataxias Espinocerebelosas/genética , Ataxia/genética , Ataxia Cerebelosa/genética , Fenotipo , Degeneraciones Espinocerebelosas/genética , Proteínas de Homeodominio/genética
2.
Mol Biol Evol ; 40(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37079883

RESUMEN

Sequencing of reduced representation libraries enables genotyping of many individuals for population genomic studies. However, high amounts of DNA are required, and the method cannot be applied directly on single cells, preventing its use on most microbes. We developed and implemented the analysis of single amplified genomes followed by restriction-site-associated DNA sequencing to bypass labor-intensive culturing and to avoid culturing bias in population genomic studies of unicellular eukaryotes. This method thus opens the way for addressing important questions about the genetic diversity, gene flow, adaptation, dispersal, and biogeography of hitherto unexplored species.


Asunto(s)
Eucariontes , Metagenómica , Eucariontes/genética , Genómica/métodos , Genoma , Análisis de Secuencia de ADN/métodos
3.
Int J Mol Sci ; 20(23)2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31771094

RESUMEN

The toxin-antitoxin (TA) systems have been attracting attention due to their role in regulating stress responses in prokaryotes and their biotechnological potential. Much recognition has been given to type II TA system of mesophiles, while thermophiles have received merely limited attention. Here, we are presenting the putative type II TA families encoded on the genomes of four Geobacillus strains. We employed the TA finder tool to mine for TA-coding genes and manually curated the results using protein domain analysis tools. We also used the NCBI BLAST, Operon Mapper, ProOpDB, and sequence alignment tools to reveal the geobacilli TA features. We identified 28 putative TA pairs, distributed over eight TA families. Among the identified TAs, 15 represent putative novel toxins and antitoxins, belonging to the MazEF, MNT-HEPN, ParDE, RelBE, and XRE-COG2856 TA families. We also identified a potentially new TA composite, AbrB-ParE. Furthermore, we are suggesting the Geobacillus acetyltransferase TA (GacTA) family, which potentially represents one of the unique TA families with a reverse gene order. Moreover, we are proposing a hypothesis on the xre-cog2856 gene expression regulation, which seems to involve the c-di-AMP. This study aims for highlighting the significance of studying TAs in Geobacillus and facilitating future experimental research.


Asunto(s)
Evolución Molecular , Regulación Bacteriana de la Expresión Génica/fisiología , Geobacillus , Familia de Multigenes/fisiología , Sistemas Toxina-Antitoxina/fisiología , Geobacillus/genética , Geobacillus/metabolismo
4.
Sci Rep ; 14(1): 4986, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424140

RESUMEN

Protists make up the vast diversity of eukaryotic life and play a critical role in biogeochemical cycling and in food webs. Because of their small size, cryptic life cycles, and large population sizes, our understanding of speciation in these organisms is very limited. We performed population genomic analyses on 153 strains isolated from eight populations of the recently radiated dinoflagellate genus Apocalathium, to explore the drivers and mechanisms of speciation processes. Species of this genus inhabit both freshwater and saline habitats, lakes and seas, and are found in cold temperate environments across the world. RAD sequencing analyses revealed that the populations were overall highly differentiated, but morphological similarity was not congruent with genetic similarity. While geographic isolation was to some extent coupled to genetic distance, this pattern was not consistent. Instead, we found evidence that the environment, specifically salinity, is a major factor in driving ecological speciation in Apocalathium. While saline populations were unique in loci coupled to genes involved in osmoregulation, freshwater populations appear to lack these. Our study highlights that adaptation to freshwater through loss of osmoregulatory genes may be an important speciation mechanism in free-living aquatic protists.


Asunto(s)
Dinoflagelados , Salinidad , Metagenómica , Ecosistema , Lagos , Dinoflagelados/genética , Filogenia , Especiación Genética
5.
medRxiv ; 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38559109

RESUMEN

Variants in GBA1 are important genetic risk factors in Parkinson's disease (PD). GBA1 T369M has been linked to an ~80% increased PD risk but the reports are conflicting and the relevance of GBA1 variants in different populations varies. A lack of association between T369M and PD in the Swedish population was recently reported but needs further validation. We therefore investigated T369M in 1,808 PD patients and 2,183 controls and our results support that T369M is not a risk factor for PD in the Swedish population.

6.
J Neurol ; 271(1): 526-542, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37787810

RESUMEN

Hereditary ataxia is a heterogeneous group of complex neurological disorders. Next-generation sequencing methods have become a great help in clinical diagnostics, but it may remain challenging to determine if a genetic variant is the cause of the patient's disease. We compiled a consecutive single-center series of 87 patients from 76 families with progressive ataxia of known or unknown etiology. We investigated them clinically and genetically using whole exome or whole genome sequencing. Test methods were selected depending on family history, clinical phenotype, and availability. Genetic results were interpreted based on the American College of Medical Genetics criteria. For high-suspicion variants of uncertain significance, renewed bioinformatical and clinical evaluation was performed to assess the level of pathogenicity. Thirty (39.5%) of the 76 families had received a genetic diagnosis at the end of our study. We present the predominant etiologies of hereditary ataxia in a Swedish patient series. In two families, we established a clinical diagnosis, although the genetic variant was classified as "of uncertain significance" only, and in an additional three families, results are pending. We found a pathogenic variant in one family, but we suspect that it does not explain the complete clinical picture. We conclude that correctly interpreting genetic variants in complex neurogenetic diseases requires genetics and clinical expertise. The neurologist's careful phenotyping remains essential to confirm or reject a diagnosis, also by reassessing clinical findings after a candidate genetic variant is suggested. Collaboration between neurology and clinical genetics and combining clinical and research approaches optimizes diagnostic yield.


Asunto(s)
Ataxia Cerebelosa , Degeneraciones Espinocerebelosas , Humanos , Suecia , Ataxia/diagnóstico , Ataxia/genética , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA