Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 16(2): e1008304, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32069333

RESUMEN

The Gram-negative Epsilonproteobacterium Campylobacter jejuni is currently the most prevalent bacterial foodborne pathogen. Like for many other human pathogens, infection studies with C. jejuni mainly employ artificial animal or cell culture models that can be limited in their ability to reflect the in-vivo environment within the human host. Here, we report the development and application of a human three-dimensional (3D) infection model based on tissue engineering to study host-pathogen interactions. Our intestinal 3D tissue model is built on a decellularized extracellular matrix scaffold, which is reseeded with human Caco-2 cells. Dynamic culture conditions enable the formation of a polarized mucosal epithelial barrier reminiscent of the 3D microarchitecture of the human small intestine. Infection with C. jejuni demonstrates that the 3D tissue model can reveal isolate-dependent colonization and barrier disruption phenotypes accompanied by perturbed localization of cell-cell junctions. Pathogenesis-related phenotypes of C. jejuni mutant strains in the 3D model deviated from those obtained with 2D-monolayers, but recapitulated phenotypes previously observed in animal models. Moreover, we demonstrate the involvement of a small regulatory RNA pair, CJnc180/190, during infections and observe different phenotypes of CJnc180/190 mutant strains in 2D vs. 3D infection models. Hereby, the CJnc190 sRNA exerts its pathogenic influence, at least in part, via repression of PtmG, which is involved in flagellin modification. Our results suggest that the Caco-2 cell-based 3D tissue model is a valuable and biologically relevant tool between in-vitro and in-vivo infection models to study virulence of C. jejuni and other gastrointestinal pathogens.


Asunto(s)
Campylobacter jejuni/genética , Interacciones Huésped-Patógeno/fisiología , Modelos Biológicos , Células CACO-2 , Infecciones por Campylobacter/microbiología , Campylobacter jejuni/patogenicidad , Células Epiteliales/microbiología , Matriz Extracelular/fisiología , Humanos , Mucosa Intestinal/microbiología , Intestino Delgado/patología , Intestinos/microbiología , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Andamios del Tejido , Virulencia
2.
Anesthesiology ; 135(1): 136-150, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33914856

RESUMEN

BACKGROUND: Sepsis is one of the leading causes of mortality in intensive care units, and sedation in the intensive care unit during sepsis is usually performed intravenously. The inhalative anesthetic sevoflurane has been shown to elicit protective effects in various inflammatory studies, but its role in peritonitis-induced sepsis remains elusive. The hypothesis was that sevoflurane controls the neutrophil infiltration by stabilization of hypoxia-inducible factor 1α and elevated adenosine A2B receptor expression. METHODS: In mouse models of zymosan- and fecal-induced peritonitis, male mice were anesthetized with sevoflurane (2 volume percent, 30 min) after the onset of inflammation. Control animals received the solvent saline. The neutrophil counts and adhesion molecules on neutrophils in the peritoneal lavage of wild-type, adenosine A2B receptor -/-, and chimeric animals were determined by flow cytometry 4 h after stimulation. Cytokines and protein release were determined in the lavage. Further, the adenosine A2B receptor and its transcription factor hypoxia-inducible factor 1α were evaluated by real-time polymerase chain reaction and Western blot analysis 4 h after stimulation. RESULTS: Sevoflurane reduced the neutrophil counts in the peritoneal lavage (mean ± SD, 25 ± 17 × 105vs. 12 ± 7 × 105 neutrophils; P = 0.004; n = 19/17) by lower expression of various adhesion molecules on neutrophils of wild-type animals but not of adenosine A2B receptor -/- animals. The cytokines concentration (means ± SD, tumor necrosis factor α [pg/ml], 523 ± 227 vs. 281 ± 101; P = 0.002; n = 9/9) and protein extravasation (mean ± SD [mg/ml], 1.4 ± 0.3 vs. 0.8 ± 0.4; P = 0.002; n = 12/11) were also lower after sevoflurane only in the wild-type mice. Chimeric mice showed the required expression of the adenosine A2B receptor on the hematopoietic and nonhematopoietic compartments for the protective effects of the anesthetic. Sevoflurane induced the expression of hypoxia-inducible factor 1α and adenosine A2B receptor in the intestine, liver, and lung. CONCLUSIONS: Sevoflurane exerts various protective effects in two murine peritonitis-induced sepsis models. These protective effects were linked with a functional adenosine A2B receptor.


Asunto(s)
Factor 1 Inducible por Hipoxia/efectos de los fármacos , Peritonitis/complicaciones , Receptor de Adenosina A2B/efectos de los fármacos , Sepsis/etiología , Sepsis/prevención & control , Sevoflurano/farmacología , Transducción de Señal/efectos de los fármacos , Anestésicos por Inhalación/farmacología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Cell Microbiol ; 21(10): e13078, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31270923

RESUMEN

The impact of oral commensal and pathogenic bacteria on peri-implant mucosa is not well understood, despite the high prevalence of peri-implant infections. Hence, we investigated responses of the peri-implant mucosa to Streptococcus oralis or Aggregatibacter actinomycetemcomitans biofilms using a novel in vitro peri-implant mucosa-biofilm model. Our 3D model combined three components, organotypic oral mucosa, implant material, and oral biofilm, with structural assembly close to native situation. S. oralis induced a protective stress response in the peri-implant mucosa through upregulation of heat shock protein (HSP70) genes. Attenuated inflammatory response was indicated by reduced cytokine levels of interleukin-6 (IL-6), interleukin-8 (CXCL8), and monocyte chemoattractant protein-1 (CCL2). The inflammatory balance was preserved through increased levels of tumor necrosis factor-alpha (TNF-α). A. actinomycetemcomitans induced downregulation of genes important for cell survival and host inflammatory response. The reduced cytokine levels of chemokine ligand 1 (CXCL1), CXCL8, and CCL2 also indicated a diminished inflammatory response. The induced immune balance by S. oralis may support oral health, whereas the reduced inflammatory response to A. actinomycetemcomitans may provide colonisation advantage and facilitate later tissue invasion. The comprehensive characterisation of peri-implant mucosa-biofilm interactions using our 3D model can provide new knowledge to improve strategies for prevention and therapy of peri-implant disease.


Asunto(s)
Aggregatibacter actinomycetemcomitans/fisiología , Biopelículas/crecimiento & desarrollo , Modelos Inmunológicos , Mucosa Bucal/inmunología , Mucosa Bucal/microbiología , Periimplantitis/inmunología , Streptococcus oralis/fisiología , Aggregatibacter actinomycetemcomitans/patogenicidad , Células Cultivadas , Quimiocina CCL2/metabolismo , Implantes Dentales/efectos adversos , Implantes Dentales/microbiología , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Mucosa Bucal/metabolismo , Mucosa Bucal/patología , Periimplantitis/microbiología , Periimplantitis/patología , Infecciones Relacionadas con Prótesis/inmunología , Titanio/química , Factor de Necrosis Tumoral alfa/metabolismo
4.
Mol Ther ; 27(5): 933-946, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30879952

RESUMEN

Chimeric antigen receptor (CAR) engineering of T cells allows one to specifically target tumor cells via cell surface antigens. A candidate target in Ewing sarcoma is the ganglioside GD2, but heterogeneic expression limits its value. Here we report that pharmacological inhibition of Enhancer of Zeste Homolog 2 (EZH2) at doses reducing H3K27 trimethylation, but not cell viability, selectively and reversibly induces GD2 surface expression in Ewing sarcoma cells. EZH2 in Ewing sarcoma cells directly binds to the promoter regions of genes encoding for two key enzymes of GD2 biosynthesis, and EZH2 inhibition enhances expression of these genes. GD2 surface expression in Ewing sarcoma cells is not associated with distinct in vitro proliferation, colony formation, chemosensitivity, or in vivo tumorigenicity. Moreover, disruption of GD2 synthesis by gene editing does not affect its in vitro behavior. EZH2 inhibitor treatment sensitizes Ewing sarcoma cells to effective cytolysis by GD2-specific CAR gene-modified T cells. In conclusion, we report a clinically applicable pharmacological approach for enhancing efficacy of adoptively transferred GD2-redirected T cells against Ewing sarcoma, by enabling recognition of tumor cells with low or negative target expression.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/genética , Gangliósidos/genética , Receptores Quiméricos de Antígenos/genética , Sarcoma de Ewing/tratamiento farmacológico , Antígenos de Superficie/efectos de los fármacos , Antígenos de Superficie/genética , Benzamidas/farmacología , Compuestos de Bifenilo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Gangliósidos/biosíntesis , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inmunoterapia/métodos , Inmunoterapia Adoptiva/métodos , Indoles/farmacología , Morfolinas , Regiones Promotoras Genéticas/genética , Piridonas/farmacología , Receptores Quiméricos de Antígenos/inmunología , Sarcoma de Ewing/genética , Sarcoma de Ewing/inmunología , Sarcoma de Ewing/patología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
5.
Biopolymers ; 110(4): e23259, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30730564

RESUMEN

The self-assembly of block copolymers has captured the interest of scientists for many decades because it can induce ordered structures and help to imitate complex structures found in nature. In contrast to proteins, nature's most functional hierarchical structures, conventional polymers are disperse in their length distribution. Here, we synthesized hydrophilic and hydrophobic polypeptoids via solid-phase synthesis (uniform) and ring-opening polymerization (disperse). Differential scanning calorimetry measurements showed that the uniform hydrophobic peptoids converge to a maximum of the melting temperature at a much lower chain length than their disperse analogs, showing that not only the chain length but also the dispersity has a considerable impact on the thermal properties of those homopolymers. These homopolymers were then coupled to yield amphiphilic block copolypeptoids. SAXS and AFM measurements confirm that the dispersity plays a major role in microphase separation of these macromolecules, and it appears that uniform hydrophobic blocks form more ordered structures.


Asunto(s)
Peptoides/química , Rastreo Diferencial de Calorimetría , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Peptoides/síntesis química , Polimerizacion , Dispersión del Ángulo Pequeño , Difracción de Rayos X
6.
Cell Microbiol ; 20(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29156489

RESUMEN

The human gastrointestinal tract is a complex ecosystem in which epithelial cells and microorganisms of the intestinal microbiota live in symbiosis. Certain members of the microbiota, in particular Escherichia coli strains of the B2 phylotype, carry the polyketide synthase-island encoding the genotoxin colibactin. Colibactin is a nonribosomal peptide or polyketide-nonribosomal peptide hybrid of still unsolved structure, which induces DNA double strand breaks (DSBs) in eukaryotic cells. However, direct contact between live bacteria and host cell is required in order to elicit these genotoxic effects. In this study, we used a variety of cell culture models, among them, a 3D cell culture approach based on decellularised small intestinal submucosa, to investigate whether the intestinal mucus layer has the potential to interfere with colibactin activity. We demonstrate that the expression of mucins and the formation of an adherent mucus layer significantly increased with increasing complexity of cell culture. Moreover, we show that the presence of an adherent mucus layer on epithelial cells attenuates the genotoxic activity of colibactin, by preventing the induction of DNA-DSBs. Removal of the adherent mucus layer restored the occurrence of DNA-DSBs.


Asunto(s)
Tracto Gastrointestinal/microbiología , Moco/microbiología , Mutágenos/metabolismo , Péptidos/metabolismo , Policétidos/metabolismo , Línea Celular Tumoral , Daño del ADN/fisiología , Escherichia coli/patogenicidad , Microbioma Gastrointestinal/fisiología , Islas Genómicas/fisiología , Células HT29 , Humanos , Simbiosis/fisiología , Virulencia/fisiología
7.
Int J Colorectal Dis ; 34(1): 193-196, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30178219

RESUMEN

PURPOSE: Although various strategies exist for chronic constipation therapy, the pathogenesis of chronic constipation is still not completely understood. The aim of this exploratory experimental study is to elucidate alterations of the autonomous enteric nervous system at the molecular level in patients with obstructed defecation, who represent one of the most predominant groups of constipated patients. METHODS: Full-thickness rectal wall samples of patients with obstructed defecation were analyzed and compared with controls. Differential gene expression analyses by RNA-Seq transcriptome profiling were performed and gene expression profiles were assigned to gene ontology pathways by application of different biological libraries. RESULTS: Analysis of the transcriptome showed that genes associated with the enteric nervous system functions were significantly downregulated in patients with obstructed defecation. These affected functions included developmental processes and synaptic transmission. CONCLUSIONS: Our results therefore indicate that obstructed defecation may represent an enteric neuropathy, comparable to Hirschsprung disease and slow-transit constipation.


Asunto(s)
Defecación , Seudoobstrucción Intestinal/fisiopatología , Bases de Datos como Asunto , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Seudoobstrucción Intestinal/genética , Persona de Mediana Edad , Transcriptoma/genética
8.
J Cell Biochem ; 119(11): 9122-9140, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30105832

RESUMEN

Multipotent adult stem cells/precursor cells, especially of the mesenchymal and endothelial lineage, may have great potential for bone tissue engineering. Although their potential is highly recognized, not much is known about the underlying molecular mechanisms that initiate the regeneration process, connect osteogenesis, and angiogenesis and, finally, orchestrate renewal of bone tissue. Our study addressed these questions by generating two in vitro cell culture models to examine the changes in the global gene expression patterns of endothelial precursor cells and mesenchymal stem cells after 24 hours of either humoral (conditioned medium) or direct cell-cell interaction (co-culture). Endothelial precursor cells were isolated from human buffy coat and mesenchymal stem cells from the bone marrow of the femoral head. The comparison of the treated and control cells by microarray analyses revealed in total more than 1500 regulated genes, which were analyzed for their affiliation to angiogenesis and osteogenesis. Expression array analyses at the RNA and protein level revealed data with respect to regulated genes, pathways and targets that may represent a valid basis for further dissection of the systems biology of regeneration processes. It may also be helpful for the reconstitution of the natural composition of a regenerative microenvironment when targeting tissue regeneration both in vitro and in situ.


Asunto(s)
Células Endoteliales/citología , Células Madre Mesenquimatosas/citología , Células de la Médula Ósea/citología , Regeneración Ósea/fisiología , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Humanos , Análisis por Micromatrices , Osteogénesis/genética , Osteogénesis/fisiología , Ingeniería de Tejidos
9.
Gastroenterology ; 152(4): 867-879, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27889570

RESUMEN

BACKGROUND AND AIMS: Tumor necrosis factor (TNF) is a cytokine that promotes inflammation and contributes to pathogenesis of inflammatory bowel diseases. Unlike other cells and tissues, intestinal epithelial cells undergo rapid cell death upon exposure to TNF, by unclear mechanisms. We investigated the roles of inhibitor of apoptosis proteins (IAPs) in the regulation of TNF-induced cell death in the intestinal epithelium of mice and intestinal organoids. METHODS: RNA from cell lines and tissues was analyzed by quantitative polymerase chain reaction, protein levels were analyzed by immunoblot assays. BIRC2 (also called cIAP1) was expressed upon induction from lentiviral vectors in young adult mouse colon (YAMC) cells. YAMC cells, the mouse colon carcinoma cell line MC38, the mouse macrophage cell line RAW 264.7, or mouse and human organoids were incubated with second mitochondrial activator of caspases (Smac)-mimetic compound LCL161 or recombinant TNF-like weak inducer of apoptosis (TNFSF12) along with TNF, and cell death was quantified. C57BL/6 mice with disruption of Xiap, Birc2 (encodes cIAP1), Birc3 (encodes cIAP2), Tnfrsf1a, or Tnfrsf1b (Tnfrsf1a and b encode TNF receptors) were injected with TNF or saline (control); liver and intestinal tissues were collected and analyzed for apoptosis induction by cleaved caspase 3 immunohistochemistry. We also measured levels of TNF and alanine aminotransferase in serum from mice. RESULTS: YAMC cells, and mouse and human intestinal organoids, died rapidly in response to TNF. YAMC and intestinal crypts expressed lower levels of XIAP, cIAP1, cIAP2, and cFLIP than liver tissue. Smac-mimetics reduced levels of cIAP1 and XIAP in MC38 and YAMC cells, and Smac-mimetics and TNF-related weak inducer of apoptosis increased TNF-induced cell death in YAMC cells and organoids-most likely by sequestering and degrading cIAP1. Injection of TNF greatly increased levels of cell death in intestinal tissue of cIAP1-null mice, compared with wild-type C57BL/6 mice, cIAP2-null mice, or XIAP-null mice. Excessive TNF-induced cell death in the intestinal epithelium was mediated TNF receptor 1. CONCLUSIONS: In a study of mouse and human cell lines, organoids, and tissues, we found cIAP1 to be required for regulation of TNF-induced intestinal epithelial cell death and survival. These findings have important implications for the pathogenesis of TNF-mediated enteropathies and chronic inflammatory diseases of the intestine.


Asunto(s)
Apoptosis , Células Epiteliales , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteína 3 que Contiene Repeticiones IAP de Baculovirus , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Citocina TWEAK , Células Epiteliales/efectos de los fármacos , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Hígado/efectos de los fármacos , Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Organoides , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Tiazoles/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Factores de Necrosis Tumoral/farmacología
10.
Angew Chem Int Ed Engl ; 57(18): 4946-4950, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29473994

RESUMEN

Iron oxide nanoparticles have been used in preclinical studies to label stem cells for non-invasive tracking and homing. The search continues for novel particle candidates that are suitable for clinical applications. Since standard analyses to investigate cell-particle interactions and safety are labor-intensive, an efficient procedure is required to guide future particle development and to exclude adverse health effects. The application of combined Raman trapping microscopy with fluidic chips is reported for the analysis of single cells labeled with different types of aminated iron oxide particles. Multivariate data analysis revealed Raman signal differences that could be clearly assigned to cell-particle interactions and cytotoxicity, respectively. A validation dataset verified that more than 95 % of the spectra were correctly classified. Thus, our approach enables rapid discrimination of non-hazardous from cytotoxic nanoparticles as a prerequisite for safe clinical applications.


Asunto(s)
Nanopartículas de Magnetita/química , Células Madre Mesenquimatosas/química , Análisis de la Célula Individual , Humanos , Células Madre Mesenquimatosas/citología , Espectrometría Raman
11.
Bioengineering (Basel) ; 11(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38391673

RESUMEN

Different studies suggest an impact of biofilms on carcinogenic lesion formation in varying human tissues. However, the mechanisms of cancer formation are difficult to examine in vivo as well as in vitro. Cell culture approaches, in most cases, are unable to keep a bacterial steady state without any overgrowth. In our approach, we aimed to develop an immunocompetent 3D tissue model which can mitigate bacterial outgrowth. We established a three-dimensional (3D) co-culture of human primary fibroblasts with pre-differentiated THP-1-derived macrophages on an SIS-muc scaffold which was derived by decellularisation of a porcine intestine. After establishment, we exposed the tissue models to define the biofilms of the Pseudomonas spec. and Staphylococcus spec. cultivated on implant mesh material. After 3 days of incubation, the cell culture medium in models with M0 and M2 pre-differentiated macrophages presented a noticeable turbidity, while models with M1 macrophages presented no noticeable bacterial growth. These results were validated by optical density measurements and a streak test. Immunohistology and immunofluorescent staining of the tissue presented a positive impact of the M1 macrophages on the structural integrity of the tissue model. Furthermore, multiplex ELISA highlighted the increased release of inflammatory cytokines for all the three model types, suggesting the immunocompetence of the developed model. Overall, in this proof-of-principle study, we were able to mitigate bacterial overgrowth and prepared a first step for the development of more complex 3D tissue models to understand the impact of biofilms on carcinogenic lesion formation.

13.
Adv Healthc Mater ; 12(30): e2301131, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37660290

RESUMEN

Bacterial infection is a crucial complication in implant restoration, in particular in permanent skin-penetrating implants. Therein, the resulting gap between transcutaneous implant and skin represents a permanent infection risk, limiting the field of application and the duration of application. To overcome this limitation, a tight physiological connection is required to achieve a biological and mechanical welding for a long-term stable closure including self-healing probabilities. This study describes a new approach, wherein the implant is connected covalently to a highly porous electrospun fleece featuring physiological dermal integration potential. The integrative potential of the scaffold is shown in vitro and confirmed in vivo, further demonstrating tissue integration by neovascularization, extracellular matrix formation, and prevention of encapsulation. To achieve a covalent connection between fleece and implant surface, self-initiated photografting and photopolymerization of hydroxyethylmethacrylate is combined with a new crosslinker (methacrylic acid coordinated titanium-oxo clusters) on proton-abstractable implant surfaces. For implant modification, the attached fleece is directed perpendicular from the implant surface into the surrounding dermal tissue. First in vitro skin implantations demonstrate the implants' dermal integration capability as well as wound closure potential on top of the fleece by epithelialization, establishing a bacteria-proof and self-healing connection of skin and transcutaneous implant.


Asunto(s)
Biomimética , Prótesis e Implantes , Humanos , Piel , Titanio , Neovascularización Patológica , Propiedades de Superficie
14.
Nat Commun ; 14(1): 7660, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996412

RESUMEN

Transmission of Trypanosoma brucei by tsetse flies involves the deposition of the cell cycle-arrested metacyclic life cycle stage into mammalian skin at the site of the fly's bite. We introduce an advanced human skin equivalent and use tsetse flies to naturally infect the skin with trypanosomes. We detail the chronological order of the parasites' development in the skin by single-cell RNA sequencing and find a rapid activation of metacyclic trypanosomes and differentiation to proliferative parasites. Here we show that after the establishment of a proliferative population, the parasites enter a reversible quiescent state characterized by slow replication and a strongly reduced metabolism. We term these quiescent trypanosomes skin tissue forms, a parasite population that may play an important role in maintaining the infection over long time periods and in asymptomatic infected individuals.


Asunto(s)
Parásitos , Trypanosoma brucei brucei , Trypanosoma , Moscas Tse-Tse , Animales , Humanos , Trypanosoma brucei brucei/genética , Piel/parasitología , Moscas Tse-Tse/parasitología , Mamíferos
15.
Cell Tissue Res ; 347(3): 725-35, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22011785

RESUMEN

In situ guided tissue regeneration, also addressed as in situ tissue engineering or endogenous regeneration, has a great potential for population-wide "minimal invasive" applications. During the last two decades, tissue engineering has been developed with remarkable in vitro and preclinical success but still the number of applications in clinical routine is extremely small. Moreover, the vision of population-wide applications of ex vivo tissue engineered constructs based on cells, growth and differentiation factors and scaffolds, must probably be deemed unrealistic for economic and regulation-related issues. Hence, the progress made in this respect will be mostly applicable to a fraction of post-traumatic or post-surgery situations such as big tissue defects due to tumor manifestation. Minimally invasive procedures would probably qualify for a broader application and ideally would only require off the shelf standardized products without cells. Such products should mimic the microenvironment of regenerating tissues and make use of the endogenous tissue regeneration capacities. Functionally, the chemotaxis of regenerative cells, their amplification as a transient amplifying pool and their concerted differentiation and remodeling should be addressed. This is especially important because the main target populations for such applications are the elderly and diseased. The quality of regenerative cells is impaired in such organisms and high levels of inhibitors also interfere with regeneration and healing. In metabolic bone diseases like osteoporosis, it is already known that antagonists for inhibitors such as activin and sclerostin enhance bone formation. Implementing such strategies into applications for in situ guided tissue regeneration should greatly enhance the efficacy of tailored procedures in the future.


Asunto(s)
Envejecimiento/patología , Regeneración Tisular Dirigida/métodos , Enfermedades Musculoesqueléticas/patología , Enfermedades Musculoesqueléticas/terapia , Regeneración/fisiología , Ingeniería de Tejidos/métodos , Animales , Humanos , Andamios del Tejido/química
16.
Altern Lab Anim ; 40(5): 235-57, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23215661

RESUMEN

Various factors, including the phylogenetic distance between laboratory animals and humans, the discrepancy between current in vitro systems and the human body, and the restrictions of in silico modelling, have generated the need for new solutions to the ever-increasing worldwide dilemma of substance testing. This review provides a historical sketch on the accentuation of this dilemma, and highlights fundamental limitations to the countermeasures taken so far. It describes the potential of recently-introduced microsystems to emulate human organs in 'organ-on-a-chip' devices. Finally, it focuses on an in-depth analysis of the first devices that aimed to mimic human systemic organ interactions in 'human-on-a-chip' systems. Their potential to replace acute systemic toxicity testing in animals, and their inability to provide alternatives to repeated dose long-term testing, are discussed. Inspired by the latest discoveries in human biology, tissue engineering and micro-systems technology, this review proposes a paradigm shift to overcome the apparent challenges. A roadmap is outlined to create a new homeostatic level of biology in 'human-on-a-chip' systems in order to, in the long run, replace systemic repeated dose safety evaluation and disease modelling in animals.


Asunto(s)
Alternativas a las Pruebas en Animales , Animales de Laboratorio , Técnicas Analíticas Microfluídicas/métodos , Pruebas de Toxicidad/métodos , Animales , Humanos , Investigación con Células Madre
17.
Methods Mol Biol ; 2436: 205-222, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34505267

RESUMEN

With the aging population, the demand for artificial small diameter vascular grafts is constantly increasing, as the availability of autologous grafts is limited due to vascular diseases. A confluent lining with endothelial cells is considered to be a cornerstone for long-term patency of artificial small diameter grafts. We use bacterial nanocellulose off-the-shelf grafts and describe a detailed methodology to study the ability of these grafts to re-colonize with endothelial cells in an in vitro bioreactor model. The viability of the constructs generated in this process was investigated using established cell culture and tissue engineering methods, which includes WST-1 proliferation assay, AcLDL uptake assay, lactate balancing and histological characterization. The data generated this straight forward methodology allow an initial assessment of the principal prospects of success in forming a stable endothelium in artificial vascular prostheses.


Asunto(s)
Reactores Biológicos , Células Endoteliales , Prótesis Vascular , Perfusión , Ingeniería de Tejidos/métodos
18.
Cells ; 11(22)2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36429061

RESUMEN

Our knowledge about respiratory virus spreading is mostly based on monolayer cultures that hardly reflect the complex organization of the airway epithelium. Thus, there is a strong demand for biologically relevant models. One possibility to study virus spreading at the cellular level is real-time imaging. In an attempt to visualize virus spreading under somewhat more physiological conditions, Calu-3 cells and human primary fibroblasts were co-cultured submerged or as air-liquid interface (ALI). An influenza A virus (IAV) replicating well in cell culture, and carrying a red fluorescent protein (RFP) reporter gene was used for real-time imaging. Our three-dimensional (3D) models exhibited important characteristics of native airway epithelium including a basement membrane, tight junctions and, in ALI models, strong mucus production. In submerged models, first fluorescence signals appeared between 9 and 12 h post infection (hpi) with a low multiplicity of infection of 0.01. Virus spreading further proceeded in the immediate vicinity of infected cells. In ALI models, RFP was found at 22 hpi and later. Consequently, the progression of infection was delayed, in contrast to the submerged model. With these features, we believe that our 3D airway models can deliver new insights in the spreading of IAV and other respiratory viruses.


Asunto(s)
Virus de la Influenza A , Microscopía , Humanos , Células Cultivadas , Células Epiteliales/metabolismo , Virus de la Influenza A/fisiología , Técnicas de Cultivo de Célula
19.
Front Immunol ; 13: 895100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874776

RESUMEN

Pulmonary diseases represent four out of ten most common causes for worldwide mortality. Thus, pulmonary infections with subsequent inflammatory responses represent a major public health concern. The pulmonary barrier is a vulnerable entry site for several stress factors, including pathogens such as viruses, and bacteria, but also environmental factors e.g. toxins, air pollutants, as well as allergens. These pathogens or pathogen-associated molecular pattern and inflammatory agents e.g. damage-associated molecular pattern cause significant disturbances in the pulmonary barrier. The physiological and biological functions, as well as the architecture and homeostatic maintenance of the pulmonary barrier are highly complex. The airway epithelium, denoting the first pulmonary barrier, encompasses cells releasing a plethora of chemokines and cytokines, and is further covered with a mucus layer containing antimicrobial peptides, which are responsible for the pathogen clearance. Submucosal antigen-presenting cells and neutrophilic granulocytes are also involved in the defense mechanisms and counterregulation of pulmonary infections, and thus may directly affect the pulmonary barrier function. The detailed understanding of the pulmonary barrier including its architecture and functions is crucial for the diagnosis, prognosis, and therapeutic treatment strategies of pulmonary diseases. Thus, considering multiple side effects and limited efficacy of current therapeutic treatment strategies in patients with inflammatory diseases make experimental in vitro and in vivo models necessary to improving clinical therapy options. This review describes existing models for studyying the pulmonary barrier function under acute inflammatory conditions, which are meant to improve the translational approaches for outcome predictions, patient monitoring, and treatment decision-making.


Asunto(s)
Pulmón , Neumonía , Contaminantes Atmosféricos , Células Presentadoras de Antígenos/inmunología , Péptidos Antimicrobianos , Quimiocinas , Citocinas , Granulocitos/inmunología , Humanos , Pulmón/inmunología , Moco/inmunología
20.
J Biomed Mater Res B Appl Biomater ; 110(3): 691-701, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34619017

RESUMEN

The limited availability of human donor organs suitable for transplantation has resulted in ever-increasing patient waiting lists globally. Xenotransplantation is considered a potential option, but is yet to reach clinical practice. Although remarkable progress has been made in overcoming immunological rejection, issues with functionality are still to be resolved. Bioengineering approaches have been used to create cardiac tissues with optimized functions. The use of decellularized xenogeneic cardiac tissues seeded with donor-derived cardiac cells may prove to be a viable strategy as supporting structures of the native tissue such as vasculature can be utilized. Here we used sequential perfusion to decellularize adult rat hearts. The acellular scaffolds were reseeded with human endothelial cells, human fibroblasts, human mesenchymal stem cells, and cardiac cells derived from human-induced pluripotent stem cells. The ability of the resultant recellularized rat scaffolds to activate human naïve neutrophils in vitro was investigated to measure xenogeneic recognition. Our results demonstrate that in contrast to cadaveric xenogeneic hearts, acellular and recellularized xenogeneic scaffolds did not activate human naïve neutrophils and suggest that decellularization removes the xenogeneic antigens that lead to human naïve neutrophil activation thus allowing human cells to populate the now "allogenized" xenogeneic scaffolds.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Células Endoteliales , Matriz Extracelular/química , Xenoinjertos , Humanos , Neutrófilos , Ratas , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA