Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Inorg Chem ; 63(11): 4957-4971, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38437845

RESUMEN

Reported are the syntheses, structural characterizations, and luminescence properties of three novel [UO2Cl4]2- bearing compounds containing substituted 1,1'-dialkyl-4,4'-bipyridinum dications (i.e., viologens). These compounds undergo photoinduced luminescence quenching upon exposure to UV radiation. This reactivity is concurrent with two phenomena: radicalization of the uranyl tetrachloride anion and photoelectron transfer to the viologen which constitutes the formal transfer of one electron from [UO2Cl4]2- to the viologen species. This behavior is elucidated using electron paramagnetic resonance (EPR) spectroscopy and further probed through a series of characterization and computational techniques including Rehm-Weller analysis, time-dependent density functional theory (TD-DFT), and density of states (DOS). This work provides a systematic study of the photoreactivity of the uranyl unit in the solid state, an under-described aspect of fundamental uranyl chemistry.

2.
Environ Sci Technol ; 58(6): 2798-2807, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38294779

RESUMEN

Solar photoexcitation of chromophoric groups in dissolved organic matter (DOM), when coupled to photoreduction of ubiquitous Fe(III)-oxide nanoparticles, can significantly accelerate DOM degradation in near-surface terrestrial systems, but the mechanisms of these reactions remain elusive. We examined the photolysis of chromophoric soil DOM coated onto hematite nanoplatelets featuring (001) exposed facets using a combination of molecular spectroscopies and density functional theory (DFT) computations. Reactive oxygen species (ROS) probed by electron paramagnetic resonance (EPR) spectroscopy revealed that both singlet oxygen and superoxide are the predominant ROS responsible for DOM degradation. DFT calculations confirmed that Fe(II) on the hematite (001) surface, created by interfacial electron transfer from photoexcited chromophores in DOM, can reduce dioxygen molecules to superoxide radicals (•O2-) through a one-electron transfer process. 1H nuclear magnetic resonance (NMR) and electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) spectroscopies show that the association of DOM with hematite enhances the cleavage of aromatic groups during photodegradation. The findings point to a pivotal role for organic matter at the interface that guides specific ROS generation and the subsequent photodegradation process, as well as the prospect of using ROS signatures as a forensic tool to help interpret more complicated field-relevant systems.


Asunto(s)
Materia Orgánica Disuelta , Compuestos Férricos , Especies Reactivas de Oxígeno , Superóxidos , Fotólisis
3.
J Am Chem Soc ; 145(32): 17603-17612, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37527523

RESUMEN

Crystal field (CF) control of rare-earth (RE) ions has been employed to minimize decoherence in qubits and to enhance the effective barrier of single-molecule magnets. The CF approach has been focused on the effects of symmetry on dynamic magnetic properties. Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal-ligand covalency in Pr4+ gives rise to CF energy scales that compete with the spin-orbit coupling of Pr4+ and thereby shifts the paradigm from the ionic ζSOC ≫ VCF limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. We examine Pr4+-doped perovskite oxide lattices (BaSnO3 and BaZrO3). These systems are defined by IC which quenches orbital angular momentum. Therefore, the single-ion spin-orbit coupled states in Pr4+ can be chemically tuned. We demonstrate a relatively large hyperfine interaction of Aiso = 1800 MHz for Pr4+, coherent manipulation of the spin with QM = 2ΩRTm, reaching up to ∼400 for 0.1Pr:BSO at T = 5 K, and significant improvement of the temperature at which Tm is limited by T1 (T* = 60 K) compared to other RE ion qubits.

4.
J Phys Chem A ; 127(40): 8347-8353, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37769184

RESUMEN

We report a study of the temperature dependence of 35Cl nuclear quadrupole resonance (NQR) transition energies and spin-lattice relaxation times (T1) for 235U-depleted dicesium uranyl tetrachloride (Cs2UO2Cl4) aimed at elucidating electronic interactions between the uranium center and atoms in the equatorial plane of the UO22+ ion. The transition frequency decreases slowly with temperature below 75 K and with a more rapid linear dependence above this temperature. The spin-lattice relaxation time becomes shorter with temperature, and as temperatures increase, the T1 decrease becomes nearly quadratic. The observed trends are reproduced by a model that assumes phonon-induced fluctuations of the electric field gradient tensor and partial electron delocalization from Cl to U. The fit of the theoretical model to experimental data allows a Debye temperature of 96 K to be estimated. The generalization of this approach to investigations of covalency in actinide-ligand bonding is examined.

5.
J Chem Phys ; 158(22)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37306956

RESUMEN

Ultraviolet (UV) photolysis of nitrite ions (NO2-) in aqueous solutions produces a suite of radicals, viz., NO·, O-, ·OH, and ·NO2. The O- and NO· radicals are initially formed from the dissociation of photoexcited NO2-. The O- radical undergoes reversible proton transfer with water to generate ·OH. Both ·OH and O- oxidize the NO2- to ·NO2 radicals. The reactions of ·OH occur at solution diffusion limits, which are influenced by the nature of the dissolved cations and anions. Here, we systematically varied the alkali metal cation, spanning the range from strongly to weakly hydrating ions, and measured the production of NO·, ·OH, and ·NO2 radicals during UV photolysis of alkaline nitrite solutions using electron paramagnetic resonance spectroscopy with nitromethane spin trapping. Comparing the data for the different alkali cations revealed that the nature of the cation had a significant effect on production of all three radical species. Radical production was inhibited in solutions with high charge density cations, e.g., lithium, and promoted in solutions containing low charge density cations, e.g., cesium. Through complementary investigations with multinuclear single pulse direct excitation nuclear magnetic resonance (NMR) spectroscopy and pulsed field gradient NMR diffusometry, cation-controlled solution structures and extent of NO2- solvation were determined to alter the initial yields of ·NO and ·OH radicals as well as alter the reactivity of NO2- toward ·OH, impacting the production of ·NO2. The implications of these results for the retrieval and processing of low-water, highly alkaline solutions that comprise legacy radioactive waste are discussed.

6.
J Am Chem Soc ; 144(22): 9734-9746, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35605129

RESUMEN

A series of seven Cu/SSZ-13 catalysts with Si/Al = 6.7 are used to elucidate key rate-controlling factors during low-temperature standard ammonia-selective catalytic reduction (NH3-SCR), via a combination of SCR kinetics and operando electron paramagnetic resonance (EPR) spectroscopy. Strong Cu-loading-dependent kinetics, with Cu atomic efficiency increasing nearly by an order of magnitude, is found when per chabazite cage occupancy for Cu ion increases from ∼0.04 to ∼0.3. This is due mainly to the release of intercage Cu transfer constraints that facilitates the redox chemistry, as evidenced from detailed Arrhenius analysis. Operando EPR spectroscopy studies reveal strong connectivity between Cu-ion dynamics and SCR kinetics, based on which it is concluded that under low-temperature steady-state SCR, kinetically most relevant Cu species are those with the highest intercage mobility. Transient binuclear Cu species are mechanistically relevant species, but their splitting and cohabitation are indispensable for low-temperature kinetics.


Asunto(s)
Amoníaco , Cobre , Amoníaco/química , Cobre/química , Espectroscopía de Resonancia por Spin del Electrón , Cinética , Temperatura
7.
Langmuir ; 38(50): 15540-15551, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36469510

RESUMEN

Several strategies for mitigating the build-up of atmospheric carbon dioxide (CO2) bring wet supercritical CO2 (scCO2) in contact with phyllosilicates such as illites and smectites. While some work has examined the role of the charge-balancing cation and smectite framework features on CO2/smectite interactions, to our knowledge no one has examined how the polarizability of the charge-balancing cation influences these behaviors. In this paper, the scCO2 adsorption properties of Pb2+, Rb+, and NH4+ saturated smectite clays at variable relative humidity are studied by integrating in situ high-pressure X-ray diffraction (XRD), infrared spectroscopic titrations, and magic angle spinning nuclear magnetic resonance (MAS NMR) methods. The results are combined with previously published data for Na+, Cs+, and Ca2+ saturated versions of the same smectites to isolate the roles of the charge-balancing cations and perform two independent tests of the role of charge-balancing cation polarizability in determining the interlayer fluid properties and smectite expansion. Independent correlations developed for (i) San Bernardino hectorite (SHCa-1) and (ii) Wyoming montmorillonite (SWy-2) both show that cation polarizability is important in predicting the interlayer composition (mol% CO2 in the interlayer fluid and CO2/cation ratio in interlayer) and the expansion behavior for smectites in contact with wet and dry scCO2. In particular, this study shows that the charge-balancing cation polarizability is the most important cation-associated parameter in determining the expansion of the trioctahedral smectite, hectorite, when in contact with dry scCO2. While both independent tests show that cation polarizability is an important factor in smectite-scCO2 systems, the correlations for hectorite are different from those determined for montmorillonite. The root of these differences is likely associated with the roles of the smectite framework on adsorption, warranting follow-up studies with a larger number of unique smectite frameworks. Overall, the results show that the polarizability of the charge-balancing cation should be considered when preparing smectite clays (or industrial processes involving smectites) to capture CO2 and in predicting the behavior of caprocks over time.

8.
Inorg Chem ; 61(9): 3821-3831, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-34817159

RESUMEN

Electric field gradient (EFG) tensors in the equatorial plane of the linear UO22+ ion have been measured by nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) experiments and computed by relativistic Kohn-Sham methods with and without environment embedding for Cs2UO2Cl4 and Cs2UO2Br4. This approach expands the possibilities for probing the electronic structure in uranyl complexes beyond the strongly covalent U-O bonds. The combined analyses find that one of the two largest principal EFG tensor components at the halogen sites points along the U-X bond (X = Cl, Br), and the second is parallel to the UO22+ ion; in Cs2UO2Cl4, the components are nearly equal in magnitude, whereas in Cs2UO2Br4, due to short-range bromide-cesium interactions, the equatorial component is dominant for one pair of Br sites and the axial component is larger for the second pair. The directions and relative magnitudes of the field gradient principal axes are found to be sensitive to the σ and π electron donation by the ligands and the model of the environment. Chlorine-35 NQR spectra of 235U-depleted and 235U-enriched Cs2UO2Cl4 exhibited no uranium-isotope-dependent shift, but the resonance of the depleted sample displayed a 58% broader line width.

9.
Angew Chem Int Ed Engl ; 61(3): e202107554, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34617372

RESUMEN

Pd-loaded FER and SSZ-13 zeolites as low-temperature passive NOx adsorbers (PNA) are compared under practical conditions. Vehicle cold start exposes the material to CO under a range of concentrations, necessitating a systematic exploration of the effect of CO on the performance of isolated Pd ions in PNA. The NO release temperature of both adsorbers decreases gradually with an increase in CO concentration from a few hundred to a few thousand ppm. This beneficial effect results from local nano-"hot spot" formation during CO oxidation. Dissimilar to Pd/SSZ-13, increasing the CO concentration above ≈1000 ppm improves the NOx storage significantly for Pd/FER, which was attributed to the presence of Pd ions in FER sites that are shielded from NOx. CO mobilizes this Pd atom to the NOx accessible position where it becomes active for PNA. This behavior explains the very high resistance of Pd/FER to hydrothermal aging: Pd/FER materials survive hydrothermal aging at 800 °C in 10 % H2 O vapor for 16 hours with no deterioration in NOx uptake/release behavior. Thus, by allocating Pd ions to the specific microporous pockets in FER, we have produced (hydro)thermally stable and active PNA materials.

10.
J Chem Phys ; 154(21): 211101, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34240987

RESUMEN

Fluorine-19 magnetic shielding tensors have been measured in a series of actinide tetrafluorides (AnF4) by solid state nuclear magnetic resonance spectroscopy. Tetravalent actinide centers with 0-8 valence electrons can form tetrafluorides with the same monoclinic structure type, making these compounds an attractive choice for a systematic study of the variation in the electronic structure across the 5f row of the Periodic Table. Pronounced deviations from predictions based on localized valence electron models have been detected by these experiments, which suggests that this approach may be used as a quantitative probe of electronic correlations.

11.
Anal Chem ; 92(20): 13961-13970, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32959648

RESUMEN

Technetium-99 (Tc), a high yield fission product generated in nuclear reactors, is one of the most difficult contaminants to address at the U.S. Department of Energy Hanford, Savannah River, and other sites. In strongly alkaline solutions typifying Hanford tank waste, Tc exists as pertechnetate (TcO4-) (oxidation state VII) as well as in reduced forms (oxidation state < VII), collectively known as non-pertechnetate (non-TcO4-) species. Designing strategies for effective Tc management, including separation and immobilization, necessitates understanding the molecular structure of the non-TcO4- species and their identification in actual tank waste samples. Identification of non-TcO4- species would facilitate the development of new treatment technologies effective for dissimilar Tc species. Toward this objective, a spectroscopic library of the Tc(I) [fac-Tc(CO)3]+ and Tc(II, IV, V, VII) compounds was generated and applied to the characterization of the actual Hanford AN-102 tank waste supernatant, which was processed to adjust Na concentration to ∼5.6 M and remove 137Cs by spherical resorcinol-formaldehyde (sRF) ion-exchange resin. Post 137Cs removal, the cesium-loaded sRF column was eluted with 0.45 M HNO3. As-received AN-102, Cs-depleted effluent, and sRF eluate fractions were comprehensively characterized for chemical composition and speciation of Tc using 99Tc nuclear magnetic resonance spectroscopy and X-ray absorption spectroscopy. It was demonstrated for the first time that non-TcO4- Tc present in the AN-102 tank waste is composed of several low-valent Tc species, including the Tc(I) [fac-Tc(CO)3]+ and Tc(IV) compounds. This is the first demonstration of multiple non-TcO4- species co-existing in the Hanford tank waste, highlighting their importance for the waste processing.

12.
J Phys Chem A ; 124(16): 3019-3025, 2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32223163

RESUMEN

Reactive nitrogen species (RNS), along with reactive oxygen species (ROS), are significant products from radiolysis in solution. While much research has been focused on biological systems, these species are also important products in the autoradiolysis that occurs in nuclear waste. Here, we determine the correlation between solution constituents, particularly nitrite, and radical products in highly alkaline solutions relevant to liquid waste. Because these radicals tend to be very short-lived, we employ spin trapping in conjunction with electron paramagnetic resonance (EPR) to detect them and quantify their production. Most spin traps do not function in these conditions (>1 M NaOH); however, nitroalkanes such as nitromethane will act as spin traps in their aci form, which is dominant at high pH. To restrict the products to those originating from nitrite, we use 280-480 nm UV light to generate radicals, avoiding products from the photolysis of water. Under these circumstances, nitric oxide, nitrite radicals, and hydroxyl radicals are detected, and the trends with the concentration of the constituents of the solutions are tracked. These include nitrite, nitrate, hydroxide, and carbonate. We find that, while the equilibrium shifts with increasing pH from hydroxyl radicals to the more slowly reacting oxide radicals, the production of nitrite radicals does not decrease.

13.
J Am Chem Soc ; 141(5): 1871-1876, 2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30669844

RESUMEN

While diamagnetic transition metal complexes that bind and split H2 have been extensively studied, paramagnetic complexes that exhibit this behavior remain rare. The square planar S = 1/2 FeI(P4N2)+ cation (FeI+) reversibly binds H2/D2 in solution, exhibiting an inverse equilibrium isotope effect of KH2/ KD2 = 0.58(4) at -5.0 °C. In the presence of excess H2, the dihydrogen complex FeI(H2)+ cleaves H2 at 25 °C in a net hydrogen atom transfer reaction, producing the dihydrogen-hydride trans-FeII(H)(H2)+. The proposed mechanism of H2 splitting involves both intra- and intermolecular steps, resulting in a mixed first- and second-order rate law with respect to initial [FeI+]. The key intermediate is a paramagnetic dihydride complex, trans-FeIII(H)2+, whose weak FeIII-H bond dissociation free energy (calculated BDFE = 44 kcal/mol) leads to bimetallic H-H homolysis, generating trans-FeII(H)(H2)+. Reaction kinetics, thermodynamics, electrochemistry, EPR spectroscopy, and DFT calculations support the proposed mechanism.

14.
J Am Chem Soc ; 141(43): 17370-17381, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31584807

RESUMEN

The reductive cleavage of aryl ether linkages is a key step in the disassembly of lignin to its monolignol components, where selectivity is determined by the kinetics of multiple parallel and consecutive liquid-phase reactions. Triphasic hydrogenolysis of 13C-labeled benzyl phenyl ether (BPE, a model compound for the major ß-O-4 linkage in lignin), catalyzed by Ni/γ-Al2O3, was observed directly at elevated temperatures (150-175 °C) and pressures (79-89 bar) using operando magic-angle spinning NMR spectroscopy. Liquid-vapor partitioning in the NMR rotor was quantified using the 13C NMR resonances for the 2-propanol solvent, whose chemical shifts report on the internal reactor temperature. At 170 °C, BPE is converted to toluene and phenol with k1 = 0.17 s-1 gcat-1 and an apparent activation barrier of (80 ± 8) kJ mol-1. Subsequent phenol hydrogenation occurs much more slowly (k2 = 0.0052 s-1 gcat-1 at 170-175 °C), such that cyclohexanol formation is significant only at higher temperatures. Toluene is stable under these reaction conditions, but its methyl group undergoes facile H/D exchange (k3 = 0.046 s-1 gcat-1 at 175 °C). While the source of the reducing equivalents for both hydrogenolysis and hydrogenation is exclusively H2/D2(g) rather than the alcohol solvent at these temperatures, the initial isotopic composition of adsorbed H/D on the catalyst surface is principally determined by the solvent isotopic composition (2-PrOH/D). All reactions are preceded by a pronounced induction period associated with catalyst activation. In air, Ni nanoparticles are passivated by a surface oxide monolayer, whose removal under H2 proceeds with an apparent activation barrier of (72 ± 13) kJ mol-1. The operando NMR spectra provide molecularly specific, time-resolved information about the multiple simultaneous and sequential processes as they occur at the solid-liquid interface.

15.
Environ Sci Technol ; 53(18): 11043-11055, 2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31442378

RESUMEN

The development of advanced functional nanomaterials for selective adsorption in complex chemical environments requires partner studies of binding mechanisms. Motivated by observations of selective Cr(III) adsorption on boehmite nanoplates (γ-AlOOH) in highly caustic multicomponent solutions of nuclear tank waste, here we unravel the adsorption mechanism in molecular detail. We examined Cr(III) adsorption to synthetic boehmite nanoplates in sodium hydroxide solutions up to 3 M, using a combination of X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), scanning/transmission electron microscopy (S/TEM), electron energy loss spectroscopy (EELS), high-resolution atomic force microscopy (HR-AFM), time-of-fight secondary ion mass spectrometry (ToF-SIMS), Cr K-edge X-ray absorption near edge structure (XANES)/extended X-ray absorption fine structure (EXAFS), and electron paramagnetic resonance (EPR). Adsorption isotherms and kinetics were successfully fit to Langmuir and pseudo-second-order kinetic models, respectively, consistent with monotonic uptake of Cr(OH)4- monomers until saturation coverage of approximately half the aluminum surface site density. High resolution AFM revealed monolayer cluster self-assembly on the (010) basal surfaces with increasing Cr(III) loading, possessing a structural motif similar to guyanaite (ß-CrOOH), stabilized by corner-sharing Cr-O-Cr bonds and attached to the surface with edge-sharing Cr-O-Al bonds. The selective uptake appears related to short-range surface templating effects, with bridging metal connections likely enabled by hydroxyl anion ligand exchange reactions at the surface. Such a cluster formation mechanism, which stops short of more laterally extensive heteroepitaxy, could be a metal uptake discrimination mechanism more prevalent than currently recognized.


Asunto(s)
Hidróxido de Aluminio , Óxido de Aluminio , Adsorción , Cromo , Difracción de Rayos X
16.
Solid State Nucl Magn Reson ; 102: 31-35, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31295629

RESUMEN

We present a novel nuclear magnetic resonance (NMR) probe design focused on optimizing the temperature gradient across the sample for high temperature magic angle spinning (MAS) experiments using standard rotors. Computational flow dynamics (CFD) simulations were used to assess and optimize the temperature gradient across the sample under MAS conditions. The chemical shift and linewidth of 207Pb direct polarization in lead nitrate were used to calibrate the sample temperature and temperature gradient, respectively. A temperature gradient of less than 3 °C across the sample was obtained by heating bearing gas flows and adjusting its temperature and flow rate during variable temperature (VT) experiments. A maximum temperature of 350 °C was achieved in this probe using a Varian 5 mm MAS rotor with standard Vespel drive tips and end caps. Time-resolved 13C and 1H MAS NMR experiments were performed at 325 °C and 60 bar to monitor an in-situ mixed phase reverse water gas shift reaction, industrial synthesis of CH3OH from a mixture of CO2 and H2 with a Cu/ZnO/Al2O3 catalyst, demonstrating the first in-situ NMR monitoring of a chemical system at temperatures higher than 250 °C in a pressurized environment. The combination of this high-temperature probe and high-pressure rotors will allow for in-situ NMR studies of a great variety of chemical reactions that are inaccessible to conventional NMR setup.

17.
J Am Chem Soc ; 139(27): 9291-9301, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28613896

RESUMEN

The geometric constraints imposed by a tetradentate P4N2 ligand play an essential role in stabilizing square planar Fe complexes with changes in metal oxidation state. The square pyramidal Fe0(N2)(P4N2) complex catalyzes the conversion of N2 to N(SiR3)3 (R = Me, Et) at room temperature, representing the highest turnover number of any Fe-based N2 silylation catalyst to date (up to 65 equiv N(SiMe3)3 per Fe center). Elevated N2 pressures (>1 atm) have a dramatic effect on catalysis, increasing N2 solubility and the thermodynamic N2 binding affinity at Fe0(N2)(P4N2). A combination of high-pressure electrochemistry and variable-temperature UV-vis spectroscopy were used to obtain thermodynamic measurements of N2 binding. In addition, X-ray crystallography, 57Fe Mössbauer spectroscopy, and EPR spectroscopy were used to fully characterize these new compounds. Analysis of Fe0, FeI, and FeII complexes reveals that the free energy of N2 binding across three oxidation states spans more than 37 kcal mol-1.

18.
Phys Chem Chem Phys ; 19(41): 28163-28174, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-29022609

RESUMEN

We present the numerical optimization and experimental characterization of two microstrip-based nuclear magnetic resonance (NMR) detectors. The first detector, introduced in our previous work, was a flat wire detector with a strip resting on a substrate, and the second detector was created by adding a ground plane on top of the strip conductor, separated by a sample-carrying capillary and a thin layer of insulator. The dimensional parameters of the detectors were optimized using numerical simulations with regards to radio frequency (RF) sensitivity and homogeneity, with particular attention given to the effect of the ground plane. The influence of copper surface finish and substrate surface on the spectral resolution was investigated, and a resolution of 0.8-1.5 Hz was obtained on 1 nL deionized water depending on sample positioning. For 0.13 nmol sucrose (0.2 M in 0.63 nL H2O) encapsulated between two Fluorinert plugs, high RF homogeneity (A810°/A90° = 70-80%) and high sensitivity (expressed in the limit of detection nLODm = 0.73-1.21 nmol s1/2) were achieved, allowing for high-performance 2D NMR spectroscopy of subnanoliter samples.

19.
Environ Sci Technol ; 50(7): 3486-93, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26974439

RESUMEN

The ability of plants and microorganisms to take up organic nitrogen in the form of free amino acids and oligopeptides has received increasing attention over the last two decades, yet the mechanisms for the formation of such compounds in soil environments remain poorly understood. We used Nuclear Magnetic Resonance (NMR) and Electron Paramagnetic Resonance (EPR) spectroscopies to distinguish the reaction of a model protein with a pedogenic oxide (Birnessite, MnO2) from its response to a phyllosilicate (Kaolinite). Our data demonstrate that birnessite fragments the model protein while kaolinite does not, resulting in soluble peptides that would be available to soil biota and confirming the existence of an abiotic pathway for the formation of organic nitrogen compounds for direct uptake by plants and microorganisms. The absence of reduced Mn(II) in the solution suggests that birnessite acts as a catalyst rather than an oxidant in this reaction. NMR and EPR spectroscopies are shown to be valuable tools to observe these reactions and capture the extent of protein transformation together with the extent of mineral response.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biota , Compuestos de Manganeso/química , Oligopéptidos/farmacología , Óxidos/química , Suelo , Proteínas Bacterianas/química , Espectroscopía de Resonancia por Spin del Electrón , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Minerales/química , Oxidación-Reducción , Dominios Proteicos , Proteolisis
20.
Nano Lett ; 15(5): 3309-16, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25785550

RESUMEN

A fundamental understanding of electrochemical reaction pathways is critical to improving the performance of Li-S batteries, but few techniques can be used to directly identify and quantify the reaction species during disharge/charge cycling processes in real time. Here, an in situ (7)Li NMR technique employing a specially designed cylindrical microbattery was used to probe the transient electrochemical and chemical reactions occurring during the cycling of a Li-S system. In situ NMR provides real time, semiquantitative information related to the temporal evolution of lithium polysulfide allotropes during both discharge/charge processes. This technique uniquely reveals that the polysulfide redox reactions involve charged free radicals as intermediate species that are difficult to detect in ex situ NMR studies. Additionally, it also uncovers vital information about the (7)Li chemical environments during the electrochemical and parasitic reactions on the Li metal anode. These new molecular-level insights about transient species and the associated anode failure mechanism are crucial to delineating effective strategies to accelerate the development of Li-S battery technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA