Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 185(11): 1860-1874.e12, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35568033

RESUMEN

Two mycobacteriophages were administered intravenously to a male with treatment-refractory Mycobacterium abscessus pulmonary infection and severe cystic fibrosis lung disease. The phages were engineered to enhance their capacity to lyse M. abscessus and were selected specifically as the most effective against the subject's bacterial isolate. In the setting of compassionate use, the evidence of phage-induced lysis was observed using molecular and metabolic assays combined with clinical assessments. M. abscessus isolates pre and post-phage treatment demonstrated genetic stability, with a general decline in diversity and no increased resistance to phage or antibiotics. The anti-phage neutralizing antibody titers to one phage increased with time but did not prevent clinical improvement throughout the course of treatment. The subject received lung transplantation on day 379, and systematic culturing of the explanted lung did not detect M. abscessus. This study describes the course and associated markers of a successful phage treatment of M. abscessus in advanced lung disease.


Asunto(s)
Bacteriófagos , Fibrosis Quística , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteriófagos/genética , Fibrosis Quística/tratamiento farmacológico , Humanos , Pulmón , Masculino , Infecciones por Mycobacterium no Tuberculosas/terapia , Mycobacterium abscessus/fisiología
2.
Cell ; 135(5): 879-93, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19041751

RESUMEN

The ability to evolve is a fundamental feature of biological systems, but the mechanisms underlying this capacity and the evolutionary dynamics of conserved core processes remain elusive. We show that yeast cells deleted of MYO1, encoding the only myosin II normally required for cytokinesis, rapidly evolved divergent pathways to restore growth and cytokinesis. The evolved cytokinesis phenotypes correlated with specific changes in the transcriptome. Polyploidy and aneuploidy were common genetic alterations in the best evolved strains, and aneuploidy could account for gene expression changes due directly to altered chromosome stoichiometry as well as to downstream effects. The phenotypic effect of aneuploidy could be recapitulated with increased copy numbers of specific regulatory genes in myo1Delta cells. These results demonstrate the evolvability of even a well-conserved process and suggest that changes in chromosome stoichiometry provide a source of heritable variation driving the emergence of adaptive phenotypes when the cell division machinery is strongly perturbed.


Asunto(s)
Aneuploidia , Evolución Molecular Dirigida , Cadenas Pesadas de Miosina/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Citocinesis , Eliminación de Gen , Genoma Fúngico , Poliploidía
3.
Proc Natl Acad Sci U S A ; 116(22): 10927-10936, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31085655

RESUMEN

Cell lineage specification is a tightly regulated process that is dependent on appropriate expression of lineage and developmental stage-specific transcriptional programs. Here, we show that Chromodomain Helicase DNA-binding protein 4 (CHD4), a major ATPase/helicase subunit of Nucleosome Remodeling and Deacetylase Complexes (NuRD) in lymphocytes, is essential for specification of the early B cell lineage transcriptional program. In the absence of CHD4 in B cell progenitors in vivo, development of these cells is arrested at an early pro-B-like stage that is unresponsive to IL-7 receptor signaling and unable to efficiently complete V(D)J rearrangements at Igh loci. Our studies confirm that chromatin accessibility and transcription of thousands of gene loci are controlled dynamically by CHD4 during early B cell development. Strikingly, CHD4-deficient pro-B cells express transcripts of many non-B cell lineage genes, including genes that are characteristic of other hematopoietic lineages, neuronal cells, and the CNS, lung, pancreas, and other cell types. We conclude that CHD4 inhibits inappropriate transcription in pro-B cells. Together, our data demonstrate the importance of CHD4 in establishing and maintaining an appropriate transcriptome in early B lymphopoiesis via chromatin accessibility.


Asunto(s)
Linfocitos B/metabolismo , Linaje de la Célula/genética , ADN Helicasas/genética , Linfopoyesis/genética , Transcripción Genética/genética , Animales , Linfocitos B/citología , Ensamble y Desensamble de Cromatina/genética , Regulación de la Expresión Génica/genética , Ratones , Ratones Transgénicos
4.
bioRxiv ; 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36945388

RESUMEN

Transcriptome evaluation of Mycobacterium tuberculosis in the lungs of laboratory animals during long-term treatment has been limited by extremely low abundance of bacterial mRNA relative to eukaryotic RNA. Here we report a targeted amplification RNA sequencing method called SEARCH-TB. After confirming that SEARCH-TB recapitulates conventional RNA-seq in vitro, we applied SEARCH-TB to Mycobacterium tuberculosis-infected BALB/c mice treated for up to 28 days with the global standard isoniazid, rifampin, pyrazinamide, and ethambutol regimen. We compared results in mice with 8-day exposure to the same regimen in vitro. After treatment of mice for 28 days, SEARCH-TB suggested broad suppression of genes associated with bacterial growth, transcription, translation, synthesis of rRNA proteins and immunogenic secretory peptides. Adaptation of drug-stressed Mycobacterium tuberculosis appeared to include a metabolic transition from ATP-maximizing respiration towards lower-efficiency pathways, modification and recycling of cell wall components, large-scale regulatory reprogramming, and reconfiguration of efflux pumps expression. Despite markedly different expression at pre-treatment baseline, murine and in vitro samples had broadly similar transcriptional change during treatment. The differences observed likely indicate the importance of immunity and pharmacokinetics in the mouse. By elucidating the long-term effect of tuberculosis treatment on bacterial cellular processes in vivo, SEARCH-TB represents a highly granular pharmacodynamic monitoring tool with potential to enhance evaluation of new regimens and thereby accelerate progress towards a new generation of more effective tuberculosis treatment.

5.
mBio ; : e0236323, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37905920

RESUMEN

To address the ongoing global tuberculosis crisis, there is a need for shorter, more effective treatments. A major reason why tuberculosis requires prolonged treatment is that, following a short initial phase of rapid killing, the residual Mycobacterium tuberculosis withstands drug killing. Because existing methods lack sensitivity to quantify low-abundance mycobacterial RNA in drug-treated animals, cellular adaptations of drug-exposed bacterial phenotypes in vivo remain poorly understood. Here, we used a novel RNA-seq method called SEARCH-TB to elucidate the Mycobacterium tuberculosis transcriptome in mice treated for up to 28 days with standard doses of isoniazid, rifampin, pyrazinamide, and ethambutol. We compared murine results with in vitro SEARCH-TB results during exposure to the same regimen. Treatment suppressed genes associated with growth, transcription, translation, synthesis of rRNA proteins, and immunogenic secretory peptides. Bacteria that survived prolonged treatment appeared to transition from ATP-maximizing respiration toward lower-efficiency pathways and showed modification and recycling of cell wall components, large-scale regulatory reprogramming, and reconfiguration of efflux pump expression. Although the pre-treatment in vivo and in vitro transcriptomes differed profoundly, genes differentially expressed following treatment in vivo and in vitro were similar, with differences likely attributable to immunity and drug pharmacokinetics in mice. These results reveal cellular adaptations of Mycobacterium tuberculosis that withstand prolonged drug exposure in vivo, demonstrating proof of concept that SEARCH-TB is a highly granular pharmacodynamic readout. The surprising finding that differential expression is concordant in vivo and in vitro suggests that insights from transcriptional analyses in vitro may translate to the mouse. IMPORTANCE A major reason that curing tuberculosis requires prolonged treatment is that drug exposure changes bacterial phenotypes. The physiologic adaptations of Mycobacterium tuberculosis that survive drug exposure in vivo have been obscure due to low sensitivity of existing methods in drug-treated animals. Using the novel SEARCH-TB RNA-seq platform, we elucidated Mycobacterium tuberculosis phenotypes in mice treated for with the global standard 4-drug regimen and compared them with the effect of the same regimen in vitro. This first view of the transcriptome of the minority Mycobacterium tuberculosis population that withstands treatment in vivo reveals adaptation of a broad range of cellular processes, including a shift in metabolism and cell wall modification. Surprisingly, the change in gene expression induced by treatment in vivo and in vitro was largely similar. This apparent "portability" from in vitro to the mouse provides important new context for in vitro transcriptional analyses that may support early preclinical drug evaluation.

6.
Genetics ; 182(1): 25-32, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19307605

RESUMEN

Next-generation methods for rapid whole-genome sequencing enable the identification of single-base-pair mutations in Drosophila by comparing a chromosome bearing a new mutation to the unmutagenized sequence. To validate this approach, we sought to identify the molecular lesion responsible for a recessive EMS-induced mutation affecting egg shell morphology by using Illumina next-generation sequencing. After obtaining sufficient sequence from larvae that were homozygous for either wild-type or mutant chromosomes, we obtained high-quality reads for base pairs composing approximately 70% of the third chromosome of both DNA samples. We verified 103 single-base-pair changes between the two chromosomes. Nine changes were nonsynonymous mutations and two were nonsense mutations. One nonsense mutation was in a gene, encore, whose mutations produce an egg shell phenotype also observed in progeny of homozygous mutant mothers. Complementation analysis revealed that the chromosome carried a new functional allele of encore, demonstrating that one round of next-generation sequencing can identify the causative lesion for a phenotype of interest. This new method of whole-genome sequencing represents great promise for mutant mapping in flies, potentially replacing conventional methods.


Asunto(s)
Drosophila melanogaster/genética , Metanosulfonato de Etilo/farmacología , Estudio de Asociación del Genoma Completo , Genoma , Mutágenos/farmacología , Mutación/efectos de los fármacos , Animales , Mapeo Cromosómico , Análisis Mutacional de ADN , Homocigoto , Polimorfismo de Nucleótido Simple
7.
Methods Mol Biol ; 1706: 175-198, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29423799

RESUMEN

RNA sequencing (RNA-seq) has become an important tool for examining the role of the transcriptome to biological processes. While RNA-seq has been widely adopted as a popular approach in many experimental designs, from gene discovery to mechanistic validation of targets, technical issues have largely limited the use of this technique to abundantly available sample sources. However, RNA-seq is becoming increasingly utilized for more specialized applications, such as flow cytometry-sorted cells and clinical specimens, due to protocol advances enabling the use of very low input material ranging from 10 pg to 10 ng of total RNA or 1-1000 intact cells. In this chapter, we present an optimized and detailed approach to RNA-seq for use with low abundance samples.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Animales , Humanos
8.
Methods Mol Biol ; 1706: 223-232, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29423801

RESUMEN

MiSeq, Illumina's integrated next generation sequencing instrument, uses reversible-terminator sequencing-by-synthesis technology to provide end-to-end sequencing solutions. The MiSeq instrument is one of the smallest benchtop sequencers that can perform onboard cluster generation, amplification, genomic DNA sequencing, and data analysis, including base calling, alignment and variant calling, in a single run. It performs both single- and paired-end runs with adjustable read lengths from 1 × 36 base pairs to 2 × 300 base pairs. A single run can produce output data of up to 15 Gb in as little as 4 h of runtime and can output up to 25 M single reads and 50 M paired-end reads. Thus, MiSeq provides an ideal platform for rapid turnaround time. MiSeq is also a cost-effective tool for various analyses focused on targeted gene sequencing (amplicon sequencing and target enrichment), metagenomics, and gene expression studies. For these reasons, MiSeq has become one of the most widely used next generation sequencing platforms. Here, we provide a protocol to prepare libraries for sequencing using the MiSeq instrument and basic guidelines for analysis of output data from the MiSeq sequencing run.


Asunto(s)
Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/instrumentación , Análisis de Secuencia de ADN/métodos , Animales , Humanos
9.
Sci Immunol ; 3(27)2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30194241

RESUMEN

In contrast to responses against infectious challenge, T cell responses induced via adjuvanted subunit vaccination are dependent on interleukin-27 (IL-27). We show that subunit vaccine-elicited cellular responses are also dependent on IL-15, again in contrast to the infectious response. Early expression of interferon regulatory factor 4 (IRF4) was compromised in either IL-27- or IL-15-deficient environments after vaccination but not infection. Because IRF4 facilitates metabolic support of proliferating cells via aerobic glycolysis, we expected this form of metabolic activity to be reduced in the absence of IL-27 or IL-15 signaling after vaccination. Instead, metabolic flux analysis indicated that vaccine-elicited T cells used only mitochondrial function to support their clonal expansion. Loss of IL-27 or IL-15 signaling during vaccination resulted in a reduction in mitochondrial function, with no corresponding increase in aerobic glycolysis. Consistent with these observations, the T cell response to vaccination was unaffected by in vivo treatment with the glycolytic inhibitor 2-deoxyglucose, whereas the response to viral challenge was markedly lowered. Collectively, our data identify IL-27 and IL-15 as critical to vaccine-elicited T cell responses because of their capacity to fuel clonal expansion through a mitochondrial metabolic program previously thought only capable of supporting quiescent naïve and memory T cells.


Asunto(s)
Linfocitos T/inmunología , Vacunas de Subunidad/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Aerobiosis , Alérgenos/inmunología , Animales , Femenino , Glucólisis , Interleucina-15/inmunología , Interleucinas/inmunología , Ratones Endogámicos C57BL , Ratones Transgénicos , Infecciones por Orthomyxoviridae/inmunología , Ovalbúmina/inmunología , Vaccinia/inmunología
10.
G3 (Bethesda) ; 2(2): 249-60, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22384403

RESUMEN

Although traditional genetic assays have characterized the pattern of crossing over across the genome in Drosophila melanogaster, these assays could not precisely define the location of crossovers. Even less is known about the frequency and distribution of noncrossover gene conversion events. To assess the specific number and positions of both meiotic gene conversion and crossover events, we sequenced the genomes of male progeny from females heterozygous for 93,538 X chromosomal single-nucleotide and InDel polymorphisms. From the analysis of the 30 F1 hemizygous X chromosomes, we detected 15 crossover and 5 noncrossover gene conversion events. Taking into account the nonuniform distribution of polymorphism along the chromosome arm, we estimate that most oocytes experience 1 crossover event and 1.6 gene conversion events per X chromosome pair per meiosis. An extrapolation to the entire genome would predict approximately 5 crossover events and 8.6 conversion events per meiosis. Mean gene conversion tract lengths were estimated to be 476 base pairs, yielding a per nucleotide conversion rate of 0.86 × 10(-5) per meiosis. Both of these values are consistent with estimates of conversion frequency and tract length obtained from studies of rosy, the only gene for which gene conversion has been studied extensively in Drosophila. Motif-enrichment analysis revealed a GTGGAAA motif that was enriched near crossovers but not near gene conversions. The low-complexity and frequent occurrence of this motif may in part explain why, in contrast to mammalian systems, no meiotic crossover hotspots have been found in Drosophila.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA