Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Microb Cell Fact ; 19(1): 221, 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33272255

RESUMEN

BACKGROUND: Exocrine pancreatic insufficiency (EPI) is characterized by the loss of active pancreatic enzymes and a resulting severely reduced food digestion. EPI therapy requires orally applied pancreatic enzyme replacement. The gut microbiome is a known mediator of intestinal diseases and may influence the outcome of EPI and the effects of a pancreatic enzyme replacement therapy (PERT). Here, we analyzed the effects of EPI and PERT on the gut microbiome in the model of pancreatic duct ligated minipigs. RESULTS: The microbial community composition in pig feces was analyzed by next generation sequencing of 16S rRNA amplicons. The data were evaluated for α- and ß-diversity changes and changes at the different Operational Taxonomic Unit (OTU) levels by Shannon-Wiener and inverse Simpson index calculation as well as by Principal Coordinates Analysis based on Bray-Curtis dissimilarity. Microbial α-diversity was reduced after EPI induction and reverted to nearly healthy state after PERT. Analysis of microbial composition and ß-diversity showed distinctive clusters of the three study groups and a change towards a composition comparable to healthy animals upon PERT. The relative abundance of possible pathobionts like Escherichia/Shigella, Acinetobacter or Stenotrophomonas was reduced by PERT. CONCLUSION: These data demonstrate that EPI-induced dysbiosis could be reverted by PERT to a nearly healthy state. Elevated α-diversity and the reduction of bacterial overgrowth after PERT promises benefits for EPI patients. Non-invasive microbiome studies may be useful for EPI therapy monitoring and as marker for response to PERT.


Asunto(s)
Bacterias/crecimiento & desarrollo , Terapia de Reemplazo Enzimático , Insuficiencia Pancreática Exocrina/tratamiento farmacológico , Microbioma Gastrointestinal , Páncreas Exocrino/enzimología , Animales , Bacterias/clasificación , Bacterias/genética , Modelos Animales de Enfermedad , Insuficiencia Pancreática Exocrina/microbiología , Heces/microbiología , Femenino , Humanos , ARN Ribosómico 16S , Porcinos , Porcinos Enanos
2.
Antibiotics (Basel) ; 10(6)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071539

RESUMEN

The resistance of uropathogens to various antibiotics is increasing, but nitroxoline remains active in vitro against some relevant multidrug resistant uropathogenic bacteria. E. coli strains, which are among the most common uropathogens, are unanimously susceptible. Thus, nitroxoline is an option for the therapy of urinary tract infections caused by multiresistant bacteria. Since nitroxoline is active against bacteria in biofilms, it will also be effective in patients with indwelling catheters or foreign bodies in the urinary tract. Cotrimoxazole, on the other hand, which, in principle, can also act on bacteria in biofilms, is frequently inactive against multiresistant uropathogens. Based on phenotypic resistance data from a large number of urine isolates, structural characterisation of an MDR plasmid of a recent ST131 uropathogenic E. coli isolate, and publicly available genomic data of resistant enterobacteria, we show that nitroxoline could be used instead of cotrimoxazole for intervention against MDR uropathogens. Particularly in uropathogenic E. coli, but also in other enterobacterial uropathogens, the frequent parallel resistance to different antibiotics due to the accumulation of multiple antibiotic resistance determinants on mobile genetic elements argues for greater consideration of nitroxoline in the treatment of uncomplicated urinary tract infections.

3.
Virulence ; 12(1): 3073-3093, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34923895

RESUMEN

Enteroaggregative Escherichia coli (EAEC) comprises an important diarrheagenic pathotype, while uropathogenic E. coli (UPEC) is the most important agent of urinary tract infection (UTI). Recently, EAEC virulence factors have been detected in E. coli strains causing UTI, showing the importance of these hybrid-pathogenic strains. Previously, we detected an E. coli strain isolated from UTI (UPEC-46) presenting characteristics of EAEC, e.g., the aggregative adherence (AA) pattern and EAEC-associated genes (aatA, aap, and pet). In this current study, we analyzed the whole genomic sequence of UPEC-46 and characterized some phenotypic traits. The AA phenotype was observed in cell lineages of urinary and intestinal origin. The production of curli, cellulose, bacteriocins, and Pet toxin was detected. Additionally, UPEC-46 was not capable of forming biofilm using different culture media and human urine. The genome sequence analysis showed that this strain belongs to serotype O166:H12, ST10, and phylogroup A, harbors the tet, aadA, and dfrA/sul resistance genes, and is phylogenetically more related to EAEC strains isolated from human feces. UPEC-46 harbors three plasmids. Plasmid p46-1 (~135 kb) carries some EAEC marker genes and those encoding the aggregate-forming pili (AFP) and its regulator (afpR). A mutation in afpA (encoding the AFP major pilin) led to the loss of pilin production and assembly, and notably, a strongly reduced adhesion to epithelial cells. In summary, the genetic background and phenotypic traits analyzed suggest that UPEC-46 is a hybrid strain (UPEC/EAEC) and highlights the importance of AFP adhesin in the adherence to colorectal and bladder cell lines.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Femenino , Proteínas Fimbrias/genética , Humanos , Masculino , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/metabolismo , alfa-Fetoproteínas
4.
Microbiol Resour Announc ; 9(16)2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32299893

RESUMEN

Eubacterium tarantellae was originally cultivated from the brain of fish affected by twirling movements. Here, we present the draft genome sequence of E. tarantellae DSM 3997, which consists of 3,982,316 bp. Most protein-coding genes in this strain are similar to genes of Clostridium bacteria, supporting the renaming of E. tarantellae as Clostridium tarantellae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA