Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Vet Microbiol ; 292: 110035, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484577

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) poses a significant threat to the global pork industry, resulting in substantial economic losses. Current control measures rely on modified live virus (MLV) vaccines with safety concerns. However, the lack of consensus on protective PRRSV antigens is impeding the development of effective and safety subunit vaccines. In this study, we conducted in vitro virus neutralization (VN) assays in MARC-145 and CRL-2843CD163/CD169 cell lines and primary porcine alveolar macrophages (PAMs) to systemically identify PRRSV structural proteins (SPs) recognized by virus-neutralizing antibodies in hyperimmune serum collected from piglets infected with highly pathogenic PRRSV (HP-PRRSV). Additionally, piglets immunized with different combinations of recombinant PRRSV-SPs were challenged with HP-PRRSV to evaluate their in vivo protection potential. Intriguingly, different in vitro VN activities of serum antibodies elicited by each PRRSV SP were observed depending on the cell type used in the VN assay. Notably, antibodies specific for GP3, GP4, and M exhibited highest in vitro VN activities in PAMs, correlating with complete protection (100% survival) against HP-PRRSV challenge in vivo after immunization of piglets with combination of GP3, GP4, M and N (GP3/GP4/M/N). Further analysis of lung pathology, weight gain, and viremia post-challenge revealed that the combination of GP3/GP4/M/N provided superior protective efficacy against severe infection. These findings underscore the potential of this SP combination to serve as an effective PRRSV subunit vaccine, marking a significant advancement in pork industry disease management.


Asunto(s)
Guanidinas , Piperazinas , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Vacunas Virales , Animales , Porcinos , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Macrófagos Alveolares , Anticuerpos Antivirales
2.
Pharmaceutics ; 14(9)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36145677

RESUMEN

The clinical use of nonsteroidal anti-inflammatory drugs is limited by their poor water solubility, unstable absorption, and low bioavailability. Solid lipid nanoparticles (SLNs) exhibit high biocompatibility and the ability to improve the bioavailability of drugs with low water solubility. Therefore, in this study, a tolfenamic acid solid lipid nanoparticle (TA-SLN) suspension was prepared by a hot melt-emulsification ultrasonication method to improve the sustained release and bioavailability of TA. The encapsulation efficiency (EE), loading capacity (LC), particle size, polydispersity index (PDI), and zeta potential of the TA-SLN suspension were 82.50 ± 0.63%, 25.13 ± 0.28%, 492 ± 6.51 nm, 0.309 ± 0.02 and -21.7 ± 0.51 mV, respectively. The TA-SLN suspension was characterized by dynamic light scattering (DLS), fluorescence microscopy (FM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier transform infrared (FT-IR) spectroscopy. The TA-SLN suspension showed improved sustained drug release in vitro compared with the commercially available TA injection. After intramuscular administration to pigs (4 mg/kg), the TA-SLN suspension displayed increases in the pharmacokinetic parameters Tmax, T1/2, and MRT0-∞ by 4.39-, 3.78-, and 3.78-fold, respectively, compared with TA injection, and showed a relative bioavailability of 185.33%. Thus, this prepared solid lipid nanosuspension is a promising new formulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA