Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Lett ; 27(7): e14469, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38990962

RESUMEN

The decline in global plant diversity has raised concerns about its implications for carbon fixation and global greenhouse gas emissions (GGE), including carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). Therefore, we conducted a comprehensive meta-analysis of 2103 paired observations, examining GGE, soil organic carbon (SOC) and plant carbon in plant mixtures and monocultures. Our findings indicate that plant mixtures decrease soil N2O emissions by 21.4% compared to monocultures. No significant differences occurred between mixtures and monocultures for soil CO2 emissions, CH4 emissions or CH4 uptake. Plant mixtures exhibit higher SOC and plant carbon storage than monocultures. After 10 years of vegetation development, a 40% reduction in species richness decreases SOC content and plant carbon storage by 12.3% and 58.7% respectively. These findings offer insights into the intricate connections between plant diversity, soil and plant carbon storage and GGE-a critical but previously unexamined aspect of biodiversity-ecosystem functioning.


Asunto(s)
Biodiversidad , Carbono , Gases de Efecto Invernadero , Plantas , Suelo , Suelo/química , Gases de Efecto Invernadero/análisis , Carbono/metabolismo , Carbono/análisis , Plantas/metabolismo , Óxido Nitroso/análisis , Óxido Nitroso/metabolismo , Ecosistema , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Metano/metabolismo , Efecto Invernadero
2.
J Chem Phys ; 160(16)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38647312

RESUMEN

Understanding and further regulating the degradation of mandrel materials is a key aspect of target fabrication in inertial confinement fusion (ICF). Here, a quasi-one-dimensional confinement model is developed using a series of single-walled carbon nanotubes with varying diameters (Dm), and the degradation of poly-α-methylstyrene (PAMS) as a typical mandrel material is investigated under such confined conditions by using the combined method of quantum mechanics and molecular mechanics. In comparison to the isolated system, the calculations show that confinement can decrease or increase the energy barriers of PAMS degradation, which directly depends on Dm. Following which a clear exponential relationship between the degradation rate of PAMS and its own density is derived, indicating that the density of PAMS can be used to regulate mandrel degradation. This work highlights the important effects of confinement on degradation and provides a valuable reference for further development of polymer degradation technologies in ICF target fabrication and other fields.

3.
Sci Total Environ ; 931: 172714, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38679108

RESUMEN

Understanding the responses of soybean rhizosphere and functional microbiomes in intercropping scenarios holds promise for optimizing nitrogen utilization in legume-based intercropping systems. This study investigated three cropping layouts under film mulching: sole soybean (S), soybean-maize intercropping in one row (IS), and soybean-maize intercropping in two rows (IIS), each subjected to two nitrogen levels: 110 kg N ha-1 (N110) and 180 kg N ha-1 (N180). Our findings reveal that cropping patterns alter bacterial and nifh communities, with approximately 5 % of soybean rhizosphere bacterial amplicon sequence variants (ASVs) and 42 % of rhizosphere nifh ASVs exhibiting altered abundances (termed sensitive ASVs). Root traits and soil properties shape these communities, with root traits exerting greater influence. Sensitive ASVs drive microbial co-occurrence networks and deterministic processes, predicting 85 % of yield variance and 78 % of partial factor productivity of nitrogen, respectively. These alterations impact bacterial and nifh diversity, complexity, stability, and deterministic processes in legume-based intercropping systems, enhancing performance in terms of yield, nitrogen utilization efficiency, land equivalent ratio, root nodule count, and nodule dry weight under IIS patterns with N110 compared to other treatments. Our findings underscore the importance of field management practices in shaping rhizosphere-sensitive ASVs, thereby altering microbial functions and ultimately impacting the productivity of legume-based intercropping systems. This mechanistic understanding of soybean rhizosphere microbial responses to intercropping patterns offers insights for sustainable intercropping enhancements through microbial manipulation.


Asunto(s)
Agricultura , Glycine max , Microbiota , Rizosfera , Microbiología del Suelo , Glycine max/microbiología , Glycine max/crecimiento & desarrollo , Agricultura/métodos , Nitrógeno/metabolismo , Producción de Cultivos/métodos , Raíces de Plantas/microbiología , Bacterias/metabolismo
4.
Int J Biol Macromol ; 275(Pt 1): 133587, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960252

RESUMEN

To investigate the response and the regulatory mechanism of common buckwheat starch, amylose, and amylopectin biosynthesis to P management strategies, field experiments were conducted in 2021 and 2022 using three phosphorus (P) levels. Results revealed that the application of 75 kg hm-2 phosphate fertilizer significantly enhanced amylopectin and total starch content in common buckwheat, leading to improved grain weight and starch yield, and decreased starch granule size. The number of upregulated differentially expressed proteins induced by phosphate fertilizer increased with the application rate, with 56 proteins identified as shared differential proteins between different P levels, primarily associated with carbohydrate and amino acid metabolism. Phosphate fertilizer inhibited amylose synthesis by downregulating granule-bound starch synthase protein expression and promoted amylopectin accumulation by upregulating 1,4-alpha-glucan branching enzyme and starch synthase proteins expression. Additionally, Phosphate fertilizer primarily promoted the accumulation of hydrophobic and essential amino acids. These findings elucidate the mechanism of P-induced starch accumulation and offer insights into phosphate fertilizer management and high-quality cultivation of common buckwheat.


Asunto(s)
Aminoácidos , Fagopyrum , Fertilizantes , Fosfatos , Almidón , Fagopyrum/metabolismo , Fagopyrum/efectos de los fármacos , Aminoácidos/metabolismo , Almidón/metabolismo , Almidón/biosíntesis , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Amilopectina/metabolismo , Amilosa/metabolismo
5.
Int J Biol Macromol ; 235: 123837, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36842742

RESUMEN

The effects of nitrogen (N) fertilizer on endosperm development, starch component, key enzyme activity and grain quality of common buckwheat were investigated in this study. The results showed that N fertilization significantly enhanced the number and area of endosperm cells, and significant increases were also observed in the contents of amylose, amylopectin and total starch. With increasing N level, the activities of key enzyme significantly increased showing the maximum under the N2 level (180 kg N ha-1), and then decreased under high N level. As N level increased, the ash, crude protein and amylose content varied from 1.36 to 2.25 %, from 7.99 to 15.84 % and from 22.69 to 27.64 %, respectively. The gelatinization enthalpy significantly increased with the range of 3.46-5.66 J/g, while no change was found in crystalline structure of common buckwheat flour. These results indicated that appropriate N application could effectively improve the endosperm development, starch synthesis and accumulation, and grain properties of common buckwheat, with the best effect under the level of 180 kg N ha-1.


Asunto(s)
Fagopyrum , Oryza , Endospermo/metabolismo , Amilosa/metabolismo , Fertilizantes , Fagopyrum/química , Nitrógeno/metabolismo , Almidón/química , Amilopectina/metabolismo , Grano Comestible/metabolismo , Oryza/química
6.
Sci Total Environ ; 903: 166261, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37579798

RESUMEN

In the pursuit of green agricultural development, alleviating the harmful effects of herbicides is critical. Herbicide safeners have been identified as an effective solution to safeguard crops without compromising the herbicidal efficacy. However, the impact of combined applications of herbicide and safeners on the physiological characteristics, growth, yield of common buckwheat, and soil enzyme activities remains unclear. Therefore, a two-year (2021 and 2022) field experiment was conducted in the Loess Plateau region of Northwest China under seven treatments: herbicide metolachlor application alone (H1); herbicide metolachlor combined with gibberellin (H1S1); herbicide metolachlor combined with brassinolide (H1S2); herbicide metolachlor combined with naian (H1S3); herbicide metolachlor combined with jiecaotong (H1S4); manual weeding (CK1) and spraying the same volume of water (CK2). The results indicated that H1S3 minimized herbicide toxicity while sustaining the herbicide control efficacy. H1S2 treatment significantly increased the chlorophyll content (SPAD value), superoxide dismutase (SOD), peroxidase (POD) activities, and decreased the malondialdehyde (MDA) content of the leaves compared to H1 treatment. Additionally, the safeners helped restore the biochemical homeostasis of the soil by preventing the inhibition of invertase and urease activities and increasing soil catalase activity. Furthermore, H1S2 promotion of dry matter accumulation, alleviation of herbicide inhibition on plant height, stem diameter, grainnumber per plant and thousand-grain weight resulted in a significant increase in grain yield (14.36 % in 2021 and 27.78 % in 2022) compared to other safener treatments. Overall, this study demonstrates that brassinolide as a safener can effectively mitigate the negative effects of herbicide on the growth and development of common buckwheat while also improving grain yield. These findings provide valuable technical guidance for sustainable and intensive production of common buckwheat in the Loess Plateau of Northwest China.

7.
Int J Biol Macromol ; 253(Pt 3): 126871, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37716662

RESUMEN

Nitrogen (N) fertilizer impacts the grain quality of common buckwheat, but the effects and regulatory mechanisms of N on various protein parameters of buckwheat are not fully understood. The purpose of this study was to investigate the particle morphology, structural and gel properties, and regulation mechanism of buckwheat protein under four N levels. The bulk density, surface hydrophobicity, particle size, and thermal properties of the buckwheat protein were maximized through the optimal N application (180 kg N/ha), further enhancing the thermal stability of the protein. N application increased the ß-sheet content and reduced the random coil content. Appropriate N fertilizer input enhanced the tertiary structure stability and gel elasticity of buckwheat protein by promoting hydrophobic interactions, disulfide bonds, ionic bonds, storage modulus and loss modulus. The differentially expressed proteins induced by N are primarily enriched in small ribosomal subunit and ribosome, improving protein quality mainly by promoting the synthesis of hydrophobic amino acids. Future agriculture should pay attention to the hydrophobic amino acid content of buckwheat to effectively improve protein quality. This study further advances the application of buckwheat protein in the field of food processing and provides a theoretical basis for the extensive development and utilization of buckwheat protein.


Asunto(s)
Aminoácidos , Fagopyrum , Aminoácidos/metabolismo , Fagopyrum/química , Nitrógeno/metabolismo , Fertilizantes , Interacciones Hidrofóbicas e Hidrofílicas
8.
Int J Biol Macromol ; 246: 125591, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37385316

RESUMEN

Common buckwheat starch, a functional ingredient, has wide food and non-food applications. Excessive chemical fertilizer application during grain cultivation decreases quality. This study examined the effects of different combinations of chemical fertilizer, organic fertilizer, and biochar treatment on the physicochemical properties and in vitro digestibility of starch. The amendment of both organic fertilizer and biochar was observed to have a greater impact on the physicochemical properties and in vitro digestibility of common buckwheat starch in comparison to organic fertilizer amendment solely. The combined application of biochar, chemical, and organic nitrogen in an 80:10:10 ratio significantly increased the amylose content, light transmittance, solubility, resistant starch content, and swelling power of the starch. Simultaneously, the application reduced the proportion of amylopectin short chains. Additionally, this combination decreased the size of starch granules, weight-average molecular weight, polydispersity index, relative crystallinity, pasting temperature, and gelatinization enthalpy of the starch compared to the utilization of chemical fertilizer alone. The correlation between physicochemical properties and in vitro digestibility was analyzed. Four principal components were obtained, which accounted for 81.18 % of the total variance. These findings indicated that the combined application of chemical fertilizer, organic fertilizer, and biochar would improve common buckwheat grain quality.


Asunto(s)
Fagopyrum , Almidón , Almidón/química , Fagopyrum/química , Fertilizantes , Amilosa/química
9.
Food Chem ; 389: 132664, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35523074

RESUMEN

Nitrogen is an essential element for the yield and quality of grain. In this study, the structural and physicochemical properties of two common buckwheat varieties under four nitrogen levels (0, 90, 180, 270 kg N ha-1) at one location in two years were investigated. With increasing nitrogen level, the contents of moisture and amylose decreased but the contents of ash and crude protein increased. Excessive nitrogen application significantly increased the granule size, but reduced the light transmittance, water solubility, swelling power, absorption of water and oil. All the samples showed a typical A - type pattern, while high relative crystallinity and low order degree were observed under high nitrogen level. The samples under high nitrogen level had lower textural properties, pasting properties and rheological properties but higher pasting temperature and gelatinization enthalpy. These results indicated that nitrogen fertilizer significantly affected the structural and physicochemical properties of common buckwheat starch.


Asunto(s)
Fagopyrum , Almidón , Amilosa/química , Fagopyrum/química , Fertilizantes , Nitrógeno/metabolismo , Solubilidad , Almidón/química , Viscosidad , Agua/química
10.
Front Plant Sci ; 13: 896985, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845696

RESUMEN

Wheat (Triticum aestivum L.) is one of the most significant cereal crops grown in the semi-arid and temperate regions of the world, but few studies comprehensively explore how the environment affects wheat yield and protein content response to drought by means of meta-analysis. Therefore, we collected data about grain yield (GY), grain protein yield (GPY), grain protein content (GPC), and grain nitrogen content (GNC), and conducted a meta-analysis on 48 previously published data sets that originate from 15 countries. Our results showed that drought significantly decreased GY and GPY by 57.32 and 46.04%, but significantly increased GPC and GNC by 9.38 and 9.27%, respectively. The responses of wheat GY and GNC to drought were mainly related to the drought type, while the GPY was mainly related to the precipitation. The yield reduction due to continuous drought stress (CD, 83.60%) was significantly greater than that of terminal drought stress (TD, 26.43%). The relationship between the precipitation and GPY increased in accordance with linear functions, and this negative drought effect was completely eliminated when the precipitation was more than 513 mm. Sandy soils and high nitrogen application level significantly mitigated the negative effects of drought, but was not the main factor affecting the drought response of wheat. Compared with spring wheat, the drought resistance effect of winter wheat was more obvious. Evaluation of these models can improve our quantitative understanding of drought on wheat yield and food security, minimizing the negative impact of drought on crop production.

11.
Food Res Int ; 162(Pt A): 112067, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36461266

RESUMEN

The accumulation of starches and amino acid content of common buckwheat is promoted by Nitrogen (N), but the molecular mechanism is not clear. N applications with 0 (control group) and 180 kg/ha were designed. High-N significantly improved grain fullness and increased the starch, amylopectin and amylose content. The number of upregulated differentially expressed proteins (DEPs) induced by N gradually increased with the filling progress. N resulted in 139, 341 and 472DEPs significant upregulation at 10d, 20d and 30d and they were mainly related to the 'Starch and sucrose metabolism', 'Protein processing in endoplasmic reticulum' and 'Ribosome' by kyoto encyclopedia of genes and genomes analysis. High-N induced one sucrose synthase, two alpha-amylases and six alpha-glucan phosphorylases significant upregulation at 30d and one alpha-amylases upregulation at 10d, and the expression levels of these proteins showed a significant linear relationship with starch and amylose contents. N promoted the arginine and lysine biosynthesis at the late filling stage. These results elucidated that the mechanism of N promoted common buckwheat starches and amino acid accumulation. The identified crucial proteins may improve buckwheat quality.


Asunto(s)
Fagopyrum , Fertilizantes , Nitrógeno , Aminoácidos , Almidón , Proteómica , Amilosa , alfa-Amilasas
12.
Int J Biol Macromol ; 192: 342-349, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599992

RESUMEN

Nitrogen (N) affects common buckwheat quality by affecting starch and amino acids (AAs) content, but its molecular mechanism is still unclear. We selected two common buckwheat varieties with high and low starch content, and designed two treatments with 180 and 0 kg N/ha. Application of high-N led to significant increases in starch, amylose and amylopectin content. Of 1337 differentially expressed proteins (DEPs) induced by high-N conditions. 472DEPs were significantly upregulated and 176DEPs downregulated for Xinong9976. 239DEPs were significantly upregulated and 126DEPs downregulated for Beizaosheng. The six alpha-glucan phosphorylases, three alpha-amylases, one granule-bound starch synthase 1 and one sucrose synthase exhibited higher expression at the 180 kg N/ha than at the 0 kg N/ha. In addition, high-N application promoted arginine, leucine, isoleucine and valine biosynthesis. This study revealed the effect of N on the starch and AA content of common buckwheat and its mechanism. The crucial proteins identified may develop the quality of common buckwheat.


Asunto(s)
Aminoácidos/biosíntesis , Metabolismo Energético , Fagopyrum/efectos de los fármacos , Fagopyrum/fisiología , Fertilizantes , Nitrógeno/metabolismo , Proteómica , Almidón/metabolismo , Amilopectina/análisis , Amilopectina/biosíntesis , Amilosa/análisis , Amilosa/biosíntesis , Metabolismo de los Hidratos de Carbono , Cromatografía Liquida , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Proteómica/métodos , Almidón/química , Espectrometría de Masas en Tándem
13.
Foods ; 10(6)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207867

RESUMEN

Nitrogen is required for proso millet growth and has a critical influence on yield and quality. However, the effect of nitrogen fertilisation on proso millet protein properties remains unclear. This study aimed to investigate how nitrogen fertiliser treatment (180 kg/hm2) affects the structural and functional properties of proso millet protein. In comparison with the control group (N0), nitrogen fertiliser treatment loosened the dense structure of the protein and presented a larger particle size. Nitrogen treatment did not change the main subunit composition, and ß-sheet and α-helix were the main secondary structures of proso millet protein based on Fourier transform infrared spectroscopy. In addition, nitrogen fertiliser treatment improved the content of hydrophobic amino acids and ß-sheet proportion from proso millet protein, and high water/oil absorption capacity and thermal stability was observed, but the solubility, emulsion stability and foaming properties from proso millet protein decreased. Proso millet proteins exhibited high amino acid content and good functional properties, including solubility, foaming capacity and emulsifying properties, especially the w139 variety. Results show that proso millet protein has great potential for food applications. The above results provide useful information for the food industry to determine emerging gluten-free protein resources.

14.
Carbohydr Polym ; 273: 118570, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34560981

RESUMEN

Nitrogen fertilizer is a crucial factor affecting the growth and grain quality of Tartary buckwheat. This study was to investigate the synthesis, accumulation, and physicochemical properties of Tartary buckwheat starches under four nitrogen levels (0, 90, 180, 270 kg N ha-1). The results showed that activities of four key enzymes, starch contents all first increased and then decreased with increasing nitrogen levels, and peaked at 180 kg N ha-1. All the starches showed typical A-type, while higher nitrogen levels significantly increased the relative crystallinity. The viscosities significantly decreased, onset, peak, and conclusion first decreased and then increased, while pasting temperature and gelatinization enthalpy increased with increasing nitrogen levels. Nitrogen fertilizer and year had significant effects on the synthesis, accumulation and physicochemical properties of Tartary buckwheat starch, and the nitrogen level of 180 kg N ha-1 was more suitable for planting in the northern area of the Loess Plateau.

15.
Int J Biol Macromol ; 179: 542-549, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33716128

RESUMEN

At present, the yield of common buckwheat, which is mainly grown in northern Shaanxi of China, is low and the grain quality is poor. Nitrogen is an important nutrient for the growth of common buckwheat, and appropriate nitrogen application can improve the grain quality. Nitrogen fertilizer could alter the starch granule morphology shapes and the granule size distribution. With increasing nitrogen levels, branch number, flower clusters number, grain number per plant, contents of protein and fat, size distribution of "C" granules, and percentages of light transmittance significantly increased, whereas amylose content and retrogradation decreased. All the samples displayed typical A-type X-ray diffraction patterns. Starch showed higher pasting temperature and gelatinization enthalpy but lower trough and final viscosities under high nitrogen levels. These results suggested N2 treatment was more suitable for common buckwheat growth, principal components and correlation analysis revealed that nitrogen fertilizer significantly affected the physicochemical properties of common buckwheat starches.


Asunto(s)
Fagopyrum , Fertilizantes/análisis , Nitrógeno/metabolismo , Almidón/química , China , Grano Comestible/química , Grano Comestible/crecimiento & desarrollo , Fagopyrum/química , Fagopyrum/crecimiento & desarrollo
16.
Int J Biol Macromol ; 156: 120-126, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32289422

RESUMEN

Common buckwheat starch (CBS) has extensive using value in the human diet. In this study, the molecular structure and physicochemical properties of CBS isolated from five cultivars collected from three regions of China were studied. Variations in molecular structure, crystalline structure, complexity, water solubility (WS), swelling power (SP), pasting properties, and thermal characteristics were recorded among the starches. The CBS had both similarities and differences in its properties by comparison with maize starch (MS) and potato starch (PS). The average molecular weight (MW) and amylopectin average chain length (ACL) of CBS ranged from 3.86 × 107 g/mol to 4.68 × 107 g/mol and from 21.29% to 22.68%, respectively. CBS and MS were divided into one subgroup and showed typical A diffraction patterns, while PS was divided into two subgroups and exhibited a typical B polymorphic pattern. The WS and SP of all the starches significantly increased with increasing temperature and had great variation at 70 °C and 90 °C. Pearson's correlation analysis showed that the molecular structure of starches greatly affected the physicochemical properties. This study revealed that the physicochemical properties of CBS could be affected by the molecular structures.


Asunto(s)
Amilopectina/química , Fagopyrum/química , Amilopectina/análisis , Amilosa/análisis , Amilosa/química , China , Correlación de Datos , Cristalización , Citometría de Flujo , Estructura Molecular , Peso Molecular , Pomadas/química , Valores de Referencia , Solanum tuberosum/química , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Viscosidad , Agua/química , Difracción de Rayos X , Zea mays/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA