Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 12(1): e1005797, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26765929

RESUMEN

Ref is an HNH superfamily endonuclease that only cleaves DNA to which RecA protein is bound. The enigmatic physiological function of this unusual enzyme is defined here. Lysogenization by bacteriophage P1 renders E. coli more sensitive to the DNA-damaging antibiotic ciprofloxacin, an example of a phenomenon termed phage-antibiotic synergy (PAS). The complementary effect of phage P1 is uniquely traced to the P1-encoded gene ref. Ref is a P1 function that amplifies the lytic cycle under conditions when the bacterial SOS response is induced due to DNA damage. The effect of Ref is multifaceted. DNA binding by Ref interferes with normal DNA metabolism, and the nuclease activity of Ref enhances genome degradation. Ref also inhibits cell division independently of the SOS response. Ref gene expression is toxic to E. coli in the absence of other P1 functions, both alone and in combination with antibiotics. The RecA proteins of human pathogens Neisseria gonorrhoeae and Staphylococcus aureus serve as cofactors for Ref-mediated DNA cleavage. Ref is especially toxic during the bacterial SOS response and the limited growth of stationary phase cultures, targeting aspects of bacterial physiology that are closely associated with the development of bacterial pathogen persistence.


Asunto(s)
Ciprofloxacina/farmacología , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Rec A Recombinasas/genética , Proteínas Virales/genética , Bacteriófago P1/genética , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Humanos , Lisogenia/genética , Neisseria gonorrhoeae/efectos de los fármacos , Respuesta SOS en Genética , Staphylococcus aureus/efectos de los fármacos
2.
bioRxiv ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38370744

RESUMEN

The calcium-activated TMEM16 proteins and the mechanosensitive/osmolarity-activated OSCA/TMEM63 proteins belong to the Transmembrane Channel/Scramblase (TCS) superfamily. Within the superfamily, OSCA/TMEM63 proteins, as well as TMEM16A and TMEM16B, likely function solely as ion channels. However, the remaining TMEM16 members, including TMEM16F, maintain an additional function as scramblases, rapidly exchanging phospholipids between leaflets of the membrane. Although recent studies have advanced our understanding of TCS structure-function relationships, the molecular determinants of TCS ion and lipid permeation remain unclear. Here we show that single lysine mutations in transmembrane helix (TM) 4 allow non-scrambling TCS members to permeate phospholipids. This study highlights the key role of TM 4 in controlling TCS ion and lipid permeation and offers novel insights into the evolution of the TCS superfamily, suggesting that, like TMEM16s, the OSCA/TMEM63 family maintains a conserved potential to permeate ions and phospholipids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA