Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Glia ; 72(3): 588-606, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38009275

RESUMEN

Proteostasis mechanisms mediated by macroautophagy/autophagy are altered in neurodegenerative diseases such as Alzheimer disease (AD) and their recovery/enhancement has been proposed as a therapeutic approach. From the two central nodes in the anabolism-catabolism balance, it is generally accepted that mechanistic target of rapamycin kinase complex 1 (MTORC1)_ activation leads to the inhibition of autophagy, whereas adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) has the opposite role. In AD, amyloid beta (Aß) production disturbs the optimal neuronal/glial proteostasis. As astrocytes are essential for brain homeostasis, the purpose of this work was to analyze if the upregulation of autophagy in this cell type, either by MTORC1 inhibition or AMPK activation, could modulate the generation/degradation of ß-amyloid. By using primary astrocytes from amyloid beta precursor protein (APP)/Presenilin 1 (PSEN1) mouse model of AD, we confirmed that MTORC1 inhibition reduced Aß secretion through moderate autophagy induction. Surprisingly, pharmacologically increased activity of AMPK did not enhance autophagy but had different effects on Aß secretion. Conversely, AMPK inhibition did not affect autophagy but reduced Aß secretion. These puzzling data were confirmed through the overexpression of different mutant AMPK isoforms: while only the constitutively active AMPK increased autophagy, all versions augmented Aß secretion. We conclude that AMPK has a significantly different role in primary astrocytes than in other reported cells, similar to our previous findings in neurons. Our data support that perhaps only a basal AMPK activity is needed to maintain autophagy whereas the increased activity, either physiologically or pharmacologically, has no direct effect on autophagy-dependent amyloidosis. These results shed light on the controversy about the therapeutic effect of AMPK activation on autophagy induction.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Astrocitos/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Presenilina-1 , Enfermedad de Alzheimer/metabolismo , Autofagia/fisiología
2.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37958666

RESUMEN

Alzheimer's disease (AD), the most prevalent form of dementia, is a neurodegenerative disorder characterized by different pathological symptomatology, including disrupted circadian rhythm. The regulation of circadian rhythm depends on the light information that is projected from the retina to the suprachiasmatic nucleus in the hypothalamus. Studies of AD patients and AD transgenic mice have revealed AD retinal pathology, including amyloid-ß (Aß) accumulation that can directly interfere with the regulation of the circadian cycle. Although the cause of AD pathology is poorly understood, one of the main risk factors for AD is female gender. Here, we found that female APP/PS1 mice at 6- and 12-months old display severe circadian rhythm disturbances and retinal pathological hallmarks, including Aß deposits in retinal layers. Since brain Aß transport is facilitated by aquaporin (AQP)4, the expression of AQPs were also explored in APP/PS1 retina to investigate a potential correlation between retinal Aß deposits and AQPs expression. Important reductions in AQP1, AQP4, and AQP5 were detected in the retinal tissue of these transgenic mice, mainly at 6-months of age. Taken together, our findings suggest that abnormal transport of Aß, mediated by impaired AQPs expression, contributes to the retinal degeneration in the early stages of AD.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Ratones , Humanos , Femenino , Animales , Lactante , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Retina/metabolismo , Acuaporina 4/genética , Expresión Génica , Modelos Animales de Enfermedad , Presenilina-1/genética , Presenilina-1/metabolismo , Placa Amiloide/metabolismo
3.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35055164

RESUMEN

Since the optic nerve is one of the most myelinated tracts in the central nervous system (CNS), many myelin diseases affect the visual system. In this sense, our laboratory has recently reported that the GTPases R-Ras1 and R-Ras2 are essential for oligodendrocyte survival and maturation. Hypomyelination produced by the absence of one or both proteins triggers axonal degeneration and loss of visual and motor function. However, little is known about R-Ras specificity and other possible roles that they could play in the CNS. In this work, we describe how a lack of R-Ras1 and/or R-Ras2 could not be compensated by increased expression of the closely related R-Ras3 or classical Ras. We further studied R-Ras1 and R-Ras2 expression within different CNS anatomical regions, finding that both were more abundant in less-myelinated regions, suggesting their expression in non-oligodendroglial cells. Finally, using confocal immunostaining colocalization, we report for the first time that R-Ras2 is specifically expressed in neurons. Neither microglia nor astrocytes expressed R-Ras1 or R-Ras2. These results open a new avenue for the study of neuronal R-Ras2's contribution to the process of myelination.


Asunto(s)
Sistema Nervioso Central/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Animales , Astrocitos/metabolismo , Femenino , Técnicas de Inactivación de Genes , Masculino , Ratones , Microglía/metabolismo , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Especificidad de Órganos , Regulación hacia Arriba
4.
Glia ; 69(3): 619-637, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33010069

RESUMEN

Fast synaptic transmission in vertebrates is critically dependent on myelin for insulation and metabolic support. Myelin is produced by oligodendrocytes (OLs) that maintain multilayered membrane compartments that wrap around axonal fibers. Alterations in myelination can therefore lead to severe pathologies such as multiple sclerosis. Given that hypomyelination disorders have complex etiologies, reproducing clinical symptoms of myelin diseases from a neurological perspective in animal models has been difficult. We recently reported that R-Ras1-/- and/or R-Ras2-/- mice, which lack GTPases essential for OL survival and differentiation processes, present different degrees of hypomyelination in the central nervous system with a compounded hypomyelination in double knockout (DKO) mice. Here, we discovered that the loss of R-Ras1 and/or R-Ras2 function is associated with aberrant myelinated axons with increased numbers of mitochondria, and a disrupted mitochondrial respiration that leads to increased reactive oxygen species levels. Consequently, aberrant myelinated axons are thinner with cytoskeletal phosphorylation patterns typical of axonal degeneration processes, characteristic of myelin diseases. Although we observed different levels of hypomyelination in a single mutant mouse, the combined loss of function in DKO mice lead to a compromised axonal integrity, triggering the loss of visual function. Our findings demonstrate that the loss of R-Ras function reproduces several characteristics of hypomyelinating diseases, and we therefore propose that R-Ras1-/- and R-Ras2-/- neurological models are valuable approaches for the study of these myelin pathologies.


Asunto(s)
Axones , Vaina de Mielina , Animales , Diferenciación Celular , Sistema Nervioso Central , Ratones , Oligodendroglía
5.
Int J Mol Sci ; 22(20)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34681567

RESUMEN

Senile plaque formation as a consequence of amyloid-ß peptide (Aß) aggregation constitutes one of the main hallmarks of Alzheimer's disease (AD). This pathology is characterized by synaptic alterations and cognitive impairment. In order to either prevent or revert it, different therapeutic approaches have been proposed, and some of them are focused on diet modification. Modification of the ω-6/ω-3 fatty acids (FA) ratio in diets has been proven to affect Aß production and senile plaque formation in the hippocampus and cortex of female transgenic (TG) mice. In these diets, linoleic acid is the main contribution of ω-6 FA, whereas alpha-linoleic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) are the contributors of ω-3 FA. In the present work, we have explored the effect of ω-6/ω-3 ratio modifications in the diets of male double-transgenic APPswe/PS1ΔE9 (AD model) and wild-type mice (WT). Amyloid burden in the hippocampus increased in parallel with the increase in dietary ω-6/ω-3 ratio in TG male mice. In addition, there was a modification in the brain lipid profile proportional to the ω-6/ω-3 ratio of the diet. In particular, the higher the ω-6/ω-3 ratio, the lower the ceramides and higher the FAs, particularly docosatetraenoic acid. Modifications to the cortex lipid profile was mostly similar between TG and WT mice, except for gangliosides (higher levels in TG mice) and some ceramide species (lower levels in TG mice).


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Ceramidas/metabolismo , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-6/administración & dosificación , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Ácidos Erucicos/metabolismo , Ácidos Grasos Omega-3/efectos adversos , Ácidos Grasos Omega-6/efectos adversos , Gangliósidos/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos
6.
Int J Mol Sci ; 21(16)2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32824627

RESUMEN

Myelination is required for fast and efficient synaptic transmission in vertebrates. In the central nervous system, oligodendrocytes are responsible for creating myelin sheaths that isolate and protect axons, even throughout adulthood. However, when myelin is lost, the failure of remyelination mechanisms can cause neurodegenerative myelin-associated pathologies. From oligodendrocyte progenitor cells to mature myelinating oligodendrocytes, myelination is a highly complex process that involves many elements of cellular signaling, yet many of the mechanisms that coordinate it, remain unknown. In this review, we will focus on the three major pathways involved in myelination (PI3K/Akt/mTOR, ERK1/2-MAPK, and Wnt/ß-catenin) and recent advances describing the crosstalk elements which help to regulate them. In addition, we will review the tight relation between Ras GTPases and myelination processes and discuss its potential as novel elements of crosstalk between the pathways. A better understanding of the crosstalk elements orchestrating myelination mechanisms is essential to identify new potential targets to mitigate neurodegeneration.


Asunto(s)
Enfermedades Desmielinizantes/metabolismo , Proteínas ras/metabolismo , Animales , Humanos , Sistema de Señalización de MAP Quinasas , Vaina de Mielina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Vía de Señalización Wnt
7.
J Neurosci ; 38(22): 5096-5110, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29720552

RESUMEN

Rapid and effective neural transmission of information requires correct axonal myelination. Modifications in myelination alter axonal capacity to transmit electric impulses and enable pathological conditions. In the CNS, oligodendrocytes (OLs) myelinate axons, a complex process involving various cellular interactions. However, we know little about the mechanisms that orchestrate correct myelination. Here, we demonstrate that OLs express R-Ras1 and R-Ras2. Using female and male mutant mice to delete these proteins, we found that activation of the PI3K/Akt and Erk1/2-MAPK pathways was weaker in mice lacking one or both of these GTPases, suggesting that both proteins coordinate the activity of these two pathways. Loss of R-Ras1 and/or R-Ras2 diminishes the number of OLs in major myelinated CNS tracts and increases the proportion of immature OLs. In R-Ras1-/- and R-Ras2-/--null mice, OLs show aberrant morphologies and fail to differentiate correctly into myelin-forming phenotypes. The smaller OL population and abnormal OL maturation induce severe hypomyelination, with shorter nodes of Ranvier in R-Ras1-/- and/or R-Ras2-/- mice. These defects explain the slower conduction velocity of myelinated axons that we observed in the absence of R-Ras1 and R-Ras2. Together, these results suggest that R-Ras1 and R-Ras2 are upstream elements that regulate the survival and differentiation of progenitors into OLs through the PI3K/Akt and Erk1/2-MAPK pathways for proper myelination.SIGNIFICANCE STATEMENT In this study, we show that R-Ras1 and R-Ras2 play essential roles in regulating myelination in vivo and control fundamental aspects of oligodendrocyte (OL) survival and differentiation through synergistic activation of PI3K/Akt and Erk1/2-MAPK signaling. Mice lacking R-Ras1 and/or R-Ras2 show a diminished OL population with a higher proportion of immature OLs, explaining the observed hypomyelination in main CNS tracts. In vivo electrophysiology recordings demonstrate a slower conduction velocity of nerve impulses in the absence of R-Ras1 and R-Ras2. Therefore, R-Ras1 and R-Ras2 are essential for proper axonal myelination and accurate neural transmission.


Asunto(s)
Diferenciación Celular/fisiología , Supervivencia Celular/fisiología , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/fisiología , Proteínas de la Membrana/fisiología , Proteínas de Unión al GTP Monoméricas/fisiología , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Proteínas ras/genética , Proteínas ras/fisiología , Animales , Axones/fisiología , Diferenciación Celular/genética , Supervivencia Celular/genética , Femenino , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas de Unión al GTP Monoméricas/genética , Neurogénesis , Nervio Óptico/crecimiento & desarrollo , Nervio Óptico/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Nódulos de Ranvier/fisiología , Células Madre/fisiología
8.
Pharm Res ; 35(3): 49, 2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29411122

RESUMEN

PURPOSE: The induction of autophagy has recently been explored as a promising therapeutic strategy to combat Alzheimer's disease. Among many other factors, there is evidence that ceramides/dihydroceramides act as mediators of autophagy, although the exact mechanisms underlying such effects are poorly understood. Here, we describe how two dihydroceramide desaturase inhibitors (XM461 and XM462) trigger autophagy and reduce amyloid secretion by neurons. METHODS: Neurons isolated from wild-type and APP/PS1 transgenic mice were exposed to the two dihydroceramide desaturase inhibitors to assess their effect on these cell's protein and lipid profiles. RESULTS: Both dihydroceramide desaturase inhibitors increased the autophagic vesicles in wild-type neurons, reflected as an increase in LC3-II, and this was correlated with the accumulation of dihydroceramides and dihydrosphingomyelins. Exposing APP/PS1 transgenic neurons to these inhibitors also produced a 50% reduction in amyloid secretion and/or production. The lipidomic defects triggered by these dihydroceramide desaturase inhibitors were correlated with a loss of S6K activity, witnessed by the changes in S6 phosphorylation, which strongly suggested a reduction of mTORC1 activity. CONCLUSIONS: The data obtained strongly suggest that dihydroceramide desaturase 1 activity may modulate autophagy and mTORC1 activity in neurons, inhibiting amyloid secretion and S6K activity. As such, it is tantalizing to propose that dihydroceramide desaturase 1 may be an important therapeutic target to combat amyloidosis.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Inhibidores Enzimáticos/farmacología , Neuronas/efectos de los fármacos , Oxidorreductasas/antagonistas & inhibidores , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Autofagia/efectos de los fármacos , Células Cultivadas , Ceramidas/farmacología , Ceramidas/uso terapéutico , Cerebelo/citología , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/uso terapéutico , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Oxidorreductasas/uso terapéutico , Presenilina-1/genética , Cultivo Primario de Células , Proteínas Quinasas S6 Ribosómicas/metabolismo , Sulfuros/farmacología , Sulfuros/uso terapéutico
9.
Nanomedicine ; 14(2): 609-618, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29248676

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder related, in part, to the accumulation of amyloid-ß peptide (Aß) and especially the Aß peptide 1-42 (Aß1-42). The aim of this study was to design nanocarriers able to: (i) interact with the Aß1-42 in the blood and promote its elimination through the "sink effect" and (ii) correct the memory defect observed in AD-like transgenic mice. To do so, biodegradable, PEGylated nanoparticles were surface-functionalized with an antibody directed against Aß1-42. Treatment of AD-like transgenic mice with anti-Aß1-42-functionalized nanoparticles led to: (i) complete correction of the memory defect; (ii) significant reduction of the Aß soluble peptide and its oligomer level in the brain and (iii) significant increase of the Aß levels in plasma. This study represents the first example of Aß1-42 monoclonal antibody-decorated nanoparticle-based therapy against AD leading to complete correction of the memory defect in an experimental model of AD.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Péptidos beta-Amiloides/inmunología , Anticuerpos Monoclonales/química , Modelos Animales de Enfermedad , Trastornos de la Memoria/terapia , Nanopartículas/administración & dosificación , Polímeros/administración & dosificación , Animales , Anticuerpos Monoclonales/inmunología , Humanos , Masculino , Ratones , Ratones Transgénicos , Nanopartículas/química , Nanopartículas/metabolismo , Polímeros/química , Polímeros/metabolismo , Recuperación de la Función
10.
Biochim Biophys Acta ; 1862(7): 1297-308, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27045356

RESUMEN

Intense efforts are being undertaken to understand the pathobiology of ischemia and to develop novel and effective treatments. Angiotensin II type 2 receptor (AT2R) is related with a beneficial role in neurodegenerative disorders, including ischemia. However, the underlying molecular mechanism remains elusive. In this study, we have established that AT2R stimulation by C21 compound, a specific AT2R agonist, caused a VEGF upregulation. Using mouse primary cortical neurons exposed to oxygen-glucose deprivation (OGD), we established that this effect was mediated by a mechanism dependent of mTORC1 signaling since mTOR inhibition abolished the C21-induced VEGF upregulation. Also, we have temporally characterized the changes on VEGF levels after ischemia induction in rats using two different approaches: transient and permanent middle cerebral artery occlusion (tMCAO and pMCAO). VEGF levels were permanently augmented after reperfusion (tMCAO) whereas lower levels of VEGF were found after pMCAO, remarkably at 21days. Therefore, C21 compound accelerated the recovery of the neurological status of pMCAO rats, reduced the ischemic damage area and abolished pMCAO-induced VEGF downregulation at 21days. This effect of C21 compound was mainly observed in neurons of the peri-infarct area. Our results suggest that a C21-induced VEGF upregulation may be crucial after an ischemic neuronal insult in both of our experimental approaches. This upregulation was mediated by a mechanism dependent of Akt/mTOR signaling pathway, since mTOR inhibition abolished the VEGF upregulation induced by C21. Considering that VEGF is involved in regenerative processes, we propose that AT2R activation could be used as a potential pharmacological strategy after ischemic stroke.


Asunto(s)
Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Receptor de Angiotensina Tipo 2/agonistas , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Células Cultivadas , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Masculino , Neuronas/metabolismo , Neuronas/patología , Ratas Wistar , Receptor de Angiotensina Tipo 2/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
11.
Biochim Biophys Acta ; 1863(11): 2574-2583, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27421985

RESUMEN

PI3K proteins family have multiple and essential functions in most cellular events. This family is composed of class I, class II and class III PI3Ks, which upstream and downstream elements are not completely elucidated. Previous studies using the broad PI3K inhibitor, LY294002 allowed to propose that PI3 kinase>Akt pathway is a key element in the determination of axonal polarity in hippocampal neurons. Recently, new inhibitors with a higher selectivity for class I PI3K have been characterized. In the present study we have examined this widely accepted theory using a new class I PI3K inhibitor (GDC-0941), as well as Akt inhibitors, and PTEN phosphatase constructs to reduce PIP3 levels. Our present data show that both, class I PI3K inhibitor and Akt inhibitor did not alter axon specification in hippocampal neurons, but greatly reduced axon length. However, in the same experiments LY294002 effectively impeded axonal polarization, as previously reported. Our biochemical data show that both, class I PI3K and Akt inhibitors, effectively block downstream elements from Akt to S6K1 activity. Both inhibitors are stable in culture medium along the time period analysed, maintaining the inhibition better than LY294002. Besides, we found evidence that LY294002 directly inhibits mTORC1. However, further analysis using an mTORC1 inhibitor showed no change in neuron polarity. Same result was obtained using a general class III PI3K inhibitor. Interestingly, we found that either, wild-type PTEN, or a phosphatase-dead form of PTEN, disrupted axonal polarization, strongly suggesting that the role of PTEN in axonal polarity can be independent of PIP3.


Asunto(s)
Axones/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Cromonas/farmacología , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Hipocampo/efectos de los fármacos , Indazoles/farmacología , Morfolinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Sulfonamidas/farmacología , Animales , Axones/enzimología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Corteza Cerebral/citología , Corteza Cerebral/enzimología , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Relación Dosis-Respuesta a Droga , Edad Gestacional , Hipocampo/citología , Hipocampo/enzimología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Transfección
12.
PLoS Pathog ; 11(1): e1004571, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25611061

RESUMEN

Herpes simplex virus type 1 (HSV-1) and HSV-2 are highly prevalent viruses that cause a variety of diseases, from cold sores to encephalitis. Both viruses establish latency in peripheral neurons but the molecular mechanisms facilitating the infection of neurons are not fully understood. Using surface plasmon resonance and crosslinking assays, we show that glycoprotein G (gG) from HSV-2, known to modulate immune mediators (chemokines), also interacts with neurotrophic factors, with high affinity. In our experimental model, HSV-2 secreted gG (SgG2) increases nerve growth factor (NGF)-dependent axonal growth of sympathetic neurons ex vivo, and modifies tropomyosin related kinase (Trk)A-mediated signaling. SgG2 alters TrkA recruitment to lipid rafts and decreases TrkA internalization. We could show, with microfluidic devices, that SgG2 reduced NGF-induced TrkA retrograde transport. In vivo, both HSV-2 infection and SgG2 expression in mouse hindpaw epidermis enhance axonal growth modifying the termination zone of the NGF-dependent peptidergic free nerve endings. This constitutes, to our knowledge, the discovery of the first viral protein that modulates neurotrophins, an activity that may facilitate HSV-2 infection of neurons. This dual function of the chemokine-binding protein SgG2 uncovers a novel strategy developed by HSV-2 to modulate factors from both the immune and nervous systems.


Asunto(s)
Herpes Simple/patología , Terminaciones Nerviosas/efectos de los fármacos , Factor de Crecimiento Nervioso/metabolismo , Receptor trkA/metabolismo , Proteínas del Envoltorio Viral/farmacología , Animales , Células Cultivadas , Quimiotaxis/efectos de los fármacos , Células HEK293 , Herpes Simple/metabolismo , Herpesvirus Humano 2/metabolismo , Herpesvirus Humano 2/patogenicidad , Humanos , Ratones , Terminaciones Nerviosas/metabolismo , Terminaciones Nerviosas/patología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Transducción de Señal/efectos de los fármacos , Proteínas del Envoltorio Viral/metabolismo
13.
J Neuroinflammation ; 13(1): 210, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27576911

RESUMEN

Genital herpes is a painful disease frequently caused by the neurotropic pathogen herpes simplex virus type 2 (HSV-2). We have recently shown that HSV-2-secreted glycoprotein G (SgG2) interacts with and modulates the activity of the neurotrophin nerve growth factor (NGF). This interaction modifies the response of the NGF receptor TrkA, increasing NGF-dependent axonal growth. NGF is not only an axonal growth modulator but also an important mediator of pain and inflammation regulating the amount, localization, and activation of the thermal pain receptor transient receptor potential vanilloid 1 (TRPV1). In this work, we addressed whether SgG2 could contribute to HSV-2-induced pain. Injection of SgG2 in the mouse hindpaw produced a rapid and transient increase in thermal pain sensitivity. At the molecular level, this acute increase in thermal pain induced by SgG2 injection was dependent on differential NGF-induced phosphorylation and in changes in the amount of TrkA and TRPV1 in the dermis. These results suggest that SgG2 alters thermal pain sensitivity by modulating TRPV1 receptor.


Asunto(s)
Factor de Crecimiento Nervioso/toxicidad , Umbral del Dolor/fisiología , Dolor/inducido químicamente , Dolor/metabolismo , Canales Catiónicos TRPV/metabolismo , Proteínas del Envoltorio Viral/toxicidad , Animales , Animales Recién Nacidos , Células Cultivadas , Calor/efectos adversos , Masculino , Ratones , Umbral del Dolor/efectos de los fármacos
14.
Stem Cells ; 33(3): 646-60, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25407338

RESUMEN

Many solid tumors contain a subpopulation of cells with stem characteristics and these are known as cancer stem cells (CSCs) or tumor-initiating cells (TICs). These cells drive tumor growth and appear to be regulated by molecular pathway different from other cells in the tumor bulk. Here, we set out to determine whether elements of the PI3K-AKT pathway are necessary to maintain the CSC-like phenotype in breast tumor cells and for these cells to survive, bearing in mind that the identification of such elements is likely to be relevant to define future therapeutic targets. Our results demonstrate a close relationship between the maintenance of the CSC-like phenotype and the survival of these TICs. Inhibiting PI3K activity, or eliminating AKT activity, mostly that of the AKT1 isoform, produces a clear drop in TICs survival, and a reduction in the generation and growth of CD44(High) /CD24(Low) mammospheres. Surprisingly, the apoptosis of these TICs that is triggered by AKT1 deficiency is also associated with a loss of the stem cell/mesenchymal phenotype and a recovery of epithelial-like markers. Finally, we define downstream effectors that are responsible for controlling the CSC-phenotype, such as FoxO-Bim, and the death of these cells in the absence of AKT1. In summary, these data closely link the maintenance of the stem cell-like phenotype and the survival of these cells to the AKT-FoxO-Bim pathway.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Factores de Transcripción Forkhead/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Apoptosis , Proteína 11 Similar a Bcl2 , Línea Celular Tumoral , Proliferación Celular/fisiología , Femenino , Proteína Forkhead Box O1 , Humanos , Células MCF-7 , Fenotipo , Transducción de Señal
15.
Cereb Cortex ; 25(8): 2282-94, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24610121

RESUMEN

Axon properties, including action potential initiation and modulation, depend on both AIS integrity and the regulation of ion channel expression in the AIS. Alteration of the axon initial segment (AIS) has been implicated in neurodegenerative, psychiatric, and brain trauma diseases, thus identification of the physiological mechanisms that regulate the AIS is required to understand and circumvent AIS alterations in pathological conditions. Here, we show that the purinergic P2X7 receptor and its agonist, adenosine triphosphate (ATP), modulate both structural proteins and ion channel density at the AIS in cultured neurons and brain slices. In cultured hippocampal neurons, an increment of extracellular ATP concentration or P2X7-green fluorescent protein (GFP) expression reduced the density of ankyrin G and voltage-gated sodium channels at the AIS. This effect is mediated by P2X7-regulated calcium influx and calpain activation, and impaired by P2X7 inhibition with Brilliant Blue G (BBG), or P2X7 suppression. Electrophysiological studies in brain slices showed that P2X7-GFP transfection decreased both sodium current amplitude and intrinsic neuronal excitability, while P2X7 inhibition had the opposite effect. Finally, inhibition of P2X7 with BBG prevented AIS disruption after ischemia/reperfusion in rats. In conclusion, our study demonstrates an involvement of P2X7 receptors in the regulation of AIS mediated neuronal excitability in physiological and pathological conditions.


Asunto(s)
Adenosina Trifosfato/metabolismo , Axones/fisiología , Isquemia Encefálica/fisiopatología , Encéfalo/fisiopatología , Receptores Purinérgicos P2X7/metabolismo , Animales , Ancirinas/metabolismo , Axones/patología , Bencenosulfonatos/farmacología , Encéfalo/patología , Isquemia Encefálica/patología , Calcio/metabolismo , Calpaína/metabolismo , Hipoxia de la Célula/fisiología , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Antagonistas del Receptor Purinérgico P2X/farmacología , Ratas Wistar , Técnicas de Cultivo de Tejidos , Canales de Sodio Activados por Voltaje/metabolismo
16.
Cell Mol Life Sci ; 72(14): 2719-37, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25708702

RESUMEN

Olfactory ensheathing cell (OEC) transplantation emerged some years ago as a promising therapeutic strategy to repair injured spinal cord. However, inhibitory molecules are present for long periods of time in lesioned spinal cord, inhibiting both OEC migration and axonal regrowth. Two families of these molecules, chondroitin sulphate proteoglycans (CSPG) and myelin-derived inhibitors (MAIs), are able to trigger inhibitory responses in lesioned axons. Mounting evidence suggests that OEC migration is inhibited by myelin. Here we demonstrate that OEC migration is largely inhibited by CSPGs and that inhibition can be overcome by the bacterial enzyme Chondroitinase ABC. In parallel, we have generated a stable OEC cell line overexpressing the Nogo receptor (NgR) ectodomain to reduce MAI-associated inhibition in vitro and in vivo. Results indicate that engineered cells migrate longer distances than unmodified OECs over myelin or oligodendrocyte-myelin glycoprotein (OMgp)-coated substrates. In addition, they also show improved migration in lesioned spinal cord. Our results provide new insights toward the improvement of the mechanisms of action and optimization of OEC-based cell therapy for spinal cord lesion.


Asunto(s)
Proteínas de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Regeneración Nerviosa/fisiología , Neuroglía/fisiología , Animales , Axones/metabolismo , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Células Cultivadas , Proteoglicanos Tipo Condroitín Sulfato/farmacología , Clonación Molecular , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Técnicas Analíticas Microfluídicas , Proteínas de la Mielina/genética , Neuroglía/metabolismo , Receptor Nogo 1 , Bulbo Olfatorio/citología , Glicoproteína Oligodendrócito-Mielina/farmacología , Estructura Terciaria de Proteína , Ratas , Receptores de Superficie Celular/genética , Traumatismos de la Médula Espinal/terapia , Imagen de Lapso de Tiempo
17.
Nanomedicine ; 12(1): 43-52, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26410276

RESUMEN

We previously showed the ability of liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide (mApoE-PA-LIP) to reduce brain Aß in transgenic Alzheimer mice. Herein we investigated the efficacy of mApoE-PA-LIP to withdraw Aß peptide in different aggregation forms from the brain, using a transwell cellular model of the blood-brain barrier and APP/PS1 mice. The spontaneous efflux of Aß oligomers (Aßo), but not of Aß fibrils, from the 'brain' side of the transwell was strongly enhanced (5-fold) in presence of mApoE-PA-LIP in the 'blood' compartment. This effect is due to a withdrawal of Aßo exerted by peripheral mApoE-PA-LIP by sink effect, because, when present in the brain side, they did not act as Aßo carrier and limit the oligomer efflux. In vivo peripheral administration of mApoE-PA-LIP significantly increased the plasma Aß level, suggesting that Aß-binding particles exploiting the sink effect can be used as a therapeutic strategy for Alzheimer disease. From the Clinical Editor: Alzheimer disease (AD) at present is an incurable disease, which is thought to be caused by an accumulation of amyloid-ß (Aß) peptides in the brain. Many strategies in combating this disease have been focused on either the prevention or dissolving these peptides. In this article, the authors showed the ability of liposomes bi-functionalized with phosphatidic acid and with an ApoE- derived peptide to withdraw amyloid peptides from the brain. The data would help the future design of more novel treatment for Alzheimer disease.


Asunto(s)
Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/aislamiento & purificación , Péptidos beta-Amiloides/metabolismo , Barrera Hematoencefálica/metabolismo , Nanopartículas/metabolismo , Nanopartículas/uso terapéutico , Enfermedad de Alzheimer/metabolismo , Barrera Hematoencefálica/química , Células Cultivadas , Estudios de Factibilidad , Humanos , Nanopartículas/química
18.
Nanomedicine ; 11(2): 421-30, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25461285

RESUMEN

The accumulation of extracellular amyloid-beta (Aß) peptide and intracellular neurofibrillary tangles in the brain are two major neuropathological hallmarks of Alzheimer's disease (AD). It is thought that an equilibrium exists between Aß in the brain and in the peripheral blood and thus, it was hypothesized that shifting this equilibrium towards the blood by enhancing peripheral clearance might reduce Aß levels in the brain: the 'sink effect'. We tested this hypothesis by intraperitoneally injecting APP/PS1 transgenic mice with small unilamellar vesicles containing either phosphatidic acid or cardiolipin over 3weeks. This treatment reduced significantly the amount of Aß in the plasma and the brain levels of Aß were lighter affected. Nevertheless, this dosing regimen did modulate tau phosphorylation and glycogen synthase kinase 3 activities in the brain, suggesting that the targeting of circulating Aß may be therapeutically relevant in AD. FROM THE CLINICAL EDITOR: Intraperitoneal injection of small unilamellar vesicles containing phosphatidic acid or cardiolipin significantly reduced the amount of amyloid-beta (Aß) peptide in the plasma in a rodent model. Brain levels of Aß were also affected - although to a lesser extent - suggesting that targeting of circulating Aß may be therapeutically relevant of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/sangre , Cardiolipinas/administración & dosificación , Ácidos Fosfatidicos/administración & dosificación , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Cardiolipinas/química , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Inyecciones Intraperitoneales , Liposomas/administración & dosificación , Liposomas/química , Ratones , Ratones Transgénicos , Nanopartículas/administración & dosificación , Nanopartículas/química , Ácidos Fosfatidicos/química , Proteínas tau/metabolismo
19.
J Cell Sci ; 125(Pt 1): 176-88, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22250198

RESUMEN

In adult brains, ionotropic or metabotropic purinergic receptors are widely expressed in neurons and glial cells. They play an essential role in inflammation and neurotransmission in response to purines secreted to the extracellular medium. Recent studies have demonstrated a role for purinergic receptors in proliferation and differentiation of neural stem cells although little is known about their role in regulating the initial neuronal development and axon elongation. The objective of our study was to investigate the role of some different types of purinergic receptors, P2Y1, P2Y13 and P2X7, which are activated by ADP or ATP. To study the role and crosstalk of P2Y1, P2Y13 and P2X7 purinergic receptors in axonal elongation, we treated neurons with specific agonists and antagonists, and we nucleofected neurons with expression or shRNA plasmids. ADP and P2Y1-GFP expression improved axonal elongation; conversely, P2Y13 and ATP-gated P2X7 receptors halted axonal elongation. Signaling through each of these receptor types was coordinated by adenylate cyclase 5. In neurons nucleofected with a cAMP FRET biosensor (ICUE3), addition of ADP or Blue Brilliant G, a P2X7 antagonist, increased cAMP levels in the distal region of the axon. Adenylate cyclase 5 inhibition or suppression impaired these cAMP increments. In conclusion, our results demonstrate a crosstalk between two metabotropic and one ionotropic purinergic receptor that regulates cAMP levels through adenylate cyclase 5 and modulates axonal elongation triggered by neurotropic factors and the PI3K-Akt-GSK3 pathway.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adenilil Ciclasas/metabolismo , Axones/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Adenosina Difosfato/farmacología , Animales , Axones/efectos de los fármacos , Axones/enzimología , Forma de la Célula/efectos de los fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Silenciador del Gen , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Células HEK293 , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Ratones , Proteína Oncogénica v-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Purinérgicos P2/metabolismo , Colorantes de Rosanilina/farmacología
20.
Cell Mol Life Sci ; 70(15): 2787-97, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23455075

RESUMEN

ß-amyloid (Aß) can promote neurogenesis, both in vitro and in vivo, by inducing neural progenitor cells to differentiate into neurons. The choroid plexus in Alzheimer's disease (AD) is burdened with amyloid deposits and hosts neuronal progenitor cells. However, neurogenesis in this brain tissue is not firmly established. To investigate this issue further, we examined the effect of Aß on the neuronal differentiation of choroid plexus epithelial cells in several experimental models of AD. Here we show that Aß regulates neurogenesis in vitro in cultured choroid plexus epithelial cells as well as in vivo in the choroid plexus of APP/Ps1 mice. Treatment with oligomeric Aß increased proliferation and differentiation of neuronal progenitor cells in cultured choroid plexus epithelial cells, but decreased survival of newly born neurons. These Aß-induced neurogenic effects were also observed in choroid plexus of APP/PS1 mice, and detected also in autopsy tissue from AD patients. Analysis of signaling pathways revealed that pre-treating the choroid plexus epithelial cells with specific inhibitors of TyrK or MAPK diminished Aß-induced neuronal proliferation. Taken together, our results support a role of Aß in proliferation and differentiation in the choroid plexus epithelial cells in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/farmacología , Plexo Coroideo/citología , Células Epiteliales/metabolismo , Neurogénesis/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Animales , Bromodesoxiuridina , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Plexo Coroideo/metabolismo , Humanos , Immunoblotting , Inmunohistoquímica , Ratones , Ratones Transgénicos , Células-Madre Neurales/efectos de los fármacos , Reacción en Cadena de la Polimerasa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA