Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 277: 111388, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002812

RESUMEN

Land degradation due to soil salinity and sodicity is a serious concern in arid ecosystems. Despite the importance of conservation tillage in carbon sequestration and improving soil properties, its effect on saline-sodic soils under amendment application remains unknown. Therefore, the present study aimed to explore the combined effects of inorganic (sulfuric acid and gypsum) and organic (vermicompost) soil amendments and tillage systems (zero, reduced and deep tillage) on saline-sodic soil properties and wheat productivity. Deep tillage with vermicompost application significantly improved soil physical and chemical properties compared with control. Interestingly, integration between deep tillage and vermicompost decreased soil salinity and sodicity by 37% and 34%, respectively, compared with zero tillage and unamended soils. The application of vermicompost surpassed chemical amendments in the improvement of saline-sodic soils and consequently increased the growth and yield of wheat, provided that deep tillage was used as a suitable tillage system. Although deep tillage reduced soil organic carbon, application of vermicompost not only compensated this reduction, but also significantly increased soil organic carbon. This confirms the potential of combined deep tillage and vermicompost as a method for environmentally reclaiming saline-sodic soils.


Asunto(s)
Suelo , Triticum , Agricultura , Carbono , Secuestro de Carbono , Ecosistema
2.
Sci Rep ; 10(1): 2736, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-32066858

RESUMEN

Soil degradation due to global warming, water scarcity and diminishing natural resources negatively impacts food security. Soil fertility deterioration, particularly phosphorus (P) deficiency, remains a challenge in the arid and semi-arid regions. In this study, field experiments were conducted in different geographical locations to investigate the effects of organic amendments coupled with P fertilization and irrigation on soil physical-chemical properties, and the growth, yield and quality of wheat. Application of P fertilizers combined with organic amendments mitigated soil salinity, increased organic matter content, available water, hydraulic conductivity and available macronutrients, but decreased soil bulk density. Application of organic amendments slightly increased total Cd, Ni and Pb in soil, but Cd and Ni concentration was below allowable limits whilst Pb reached a hazardous level. Soil P fractions were significantly increased with the combined application of mineral P and organic amendments irrespective of salinity and irrigation. Crop growth yield and quality of wheat improved significantly in response to the integrated application of mineral P and organic amendments. In conclusion, the combination of mineral P sources with organic amendments could be successfully used as a cost-effective management practice to enhance soil fertility and crop production in the arid and semi-arid regions stressed with water scarcity and natural resource constraints.

3.
Plants (Basel) ; 9(1)2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31861661

RESUMEN

Potassium plays an important role in enhancing plant resistance to biological and abiotic stresses and improving fruit quality. To study the effect of potassium nutrient levels on banana root growth and its regulation mechanism, four potassium concentrations were designed to treat banana roots from no potassium to high potassium. The results indicated that K2 (3 mmol/L K2SO4) treatment was a relatively normal potassium concentration for the growth of banana root, and too high or too low potassium concentration was not conducive to the growth of banana root. By comparing the transcriptome data in each treatment in pairs, 4454 differentially expressed genes were obtained. There were obvious differences in gene function enrichment in root systems treated with different concentrations of potassium. Six significant expression profiles (profile 0, 1, 2, 7, 9 and 13) were identified by STEM analysis. The hub genes were FKF1, HsP70-1, NRT1/PTR5, CRY1, and ZIP11 in the profile 0; CYP51 in profile 1; SOS1 in profile 7; THA, LKR/SDH, MCC, C4H, CHI, F3'H, 2 PR1s, BSP, TLP, ICS, RO, chitinase and peroxidase in profile 9. Our results provide a comprehensive and systematic analysis of the gene regulation network in banana roots under different potassium stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA