Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 629(8014): 1118-1125, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38778102

RESUMEN

Higher plants survive terrestrial water deficiency and fluctuation by arresting cellular activities (dehydration) and resuscitating processes (rehydration). However, how plants monitor water availability during rehydration is unknown. Although increases in hypo-osmolarity-induced cytosolic Ca2+ concentration (HOSCA) have long been postulated to be the mechanism for sensing hypo-osmolarity in rehydration1,2, the molecular basis remains unknown. Because osmolarity triggers membrane tension and the osmosensing specificity of osmosensing channels can only be determined in vivo3-5, these channels have been classified as a subtype of mechanosensors. Here we identify bona fide cell surface hypo-osmosensors in Arabidopsis and find that pollen Ca2+ spiking is controlled directly by water through these hypo-osmosensors-that is, Ca2+ spiking is the second messenger for water status. We developed a functional expression screen in Escherichia coli for hypo-osmosensitive channels and identified OSCA2.1, a member of the hyperosmolarity-gated calcium-permeable channel (OSCA) family of proteins6. We screened single and high-order OSCA mutants, and observed that the osca2.1/osca2.2 double-knockout mutant was impaired in pollen germination and HOSCA. OSCA2.1 and OSCA2.2 function as hypo-osmosensitive Ca2+-permeable channels in planta and in HEK293 cells. Decreasing osmolarity of the medium enhanced pollen Ca2+ oscillations, which were mediated by OSCA2.1 and OSCA2.2 and required for germination. OSCA2.1 and OSCA2.2 convert extracellular water status into Ca2+ spiking in pollen and may serve as essential hypo-osmosensors for tracking rehydration in plants.


Asunto(s)
Arabidopsis , Señalización del Calcio , Calcio , Germinación , Concentración Osmolar , Polen , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Germinación/genética , Mutación , Polen/genética , Polen/metabolismo , Agua/metabolismo , Células HEK293 , Humanos , Deshidratación
2.
Arch Virol ; 169(8): 164, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990242

RESUMEN

Upregulation of ADAMTS-4 has been reported to have an important role in lung injury, and ADAMTS-4 expression is regulated by miR-126a-5p in abdominal aortic aneurysms. The aim of this study was to investigate whether miR-126a-5p/ADAMTS-4 plays a role in influenza-virus-induced lung injury. Lung fibroblasts were infected with H1N1 influenza virus to detect changes in miR-126a-5p and ADAMTS-4 expression, and cell viability was measured by CCK-8 assay. Inflammatory factors and matrix protease levels were examined using ELISA kits, and cell apoptosis was assessed by measuring the levels of apoptosis-related proteins. A dual luciferase assay was used to verify the regulatory relationship between miR-126a-5p and ADAMTS-4. H1N1 influenza virus reduced fibroblast viability, inhibited miR-126a-5p expression, and promoted ADAMTS-4 expression. Overexpression of miR-126a-5p attenuated the cellular inflammatory response, apoptosis, matrix protease secretion, and virus replication. Luciferase reporter assays revealed that miR-126a-5p inhibited ADAMTS-4 expression by targeting ADAMTS-4 mRNA. Further experiments showed that overexpression of ADAMTS-4 significantly reversed the inhibitory effects of miR-126a-5p on fibroblast inflammation, apoptosis, matrix protease secretion, and virus replication. Upregulation of miR-126a-5p inhibits H1N1-induced apoptosis, inflammatory factors, and matrix protease secretion, as well as virus replication in lung fibroblasts.


Asunto(s)
Proteína ADAMTS4 , Apoptosis , Fibroblastos , Inflamación , Subtipo H1N1 del Virus de la Influenza A , Pulmón , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Fibroblastos/virología , Fibroblastos/metabolismo , Humanos , Pulmón/virología , Pulmón/patología , Proteína ADAMTS4/genética , Proteína ADAMTS4/metabolismo , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/fisiología , Inflamación/genética , Supervivencia Celular , Replicación Viral , Gripe Humana/virología , Gripe Humana/genética , Gripe Humana/metabolismo , Línea Celular
3.
Int J Mol Med ; 41(5): 2505-2516, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29436612

RESUMEN

Seawater (SW) inhalation can induce acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In the present study, SW induced apoptosis of rat alveolar epithelial cells and histopathological alterations to lung tissue. Furthermore, SW administration increased generation of reactive oxygen species (ROS), whereas pretreatment with the ROS scavenger, N­acetyl­L­cysteine (NAC), significantly decreased ROS generation, apoptosis and histopathological alterations. In addition, SW exposure upregulated the expression levels of glucose­regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP), which are critical proteins in the endoplasmic reticulum (ER) stress response, thus indicating that SW may activate ER stress. Conversely, blocking ER stress with 4­phenylbutyric acid (4­PBA) significantly improved SW­induced apoptosis and histopathological alterations, whereas an ER stress inducer, thapsigargin, had the opposite effect. Furthermore, blocking ROS with NAC inhibited SW­induced ER stress, as evidenced by the downregulation of GRP78, phosphorylated (p)­protein kinase R­like ER kinase (PERK), p­inositol­requiring kinase 1α (IRE1α), p­50 activating transcription factor 6α and CHOP. In addition, blocking ER stress with 4­PBA decreased ROS generation. In conclusion, the present study indicated that ROS and ER stress pathways, which are involved in alveolar epithelial cell apoptosis, are important in the pathogenesis of SW­induced ALI.


Asunto(s)
Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/patología , Estrés del Retículo Endoplásmico , Pulmón/patología , Especies Reactivas de Oxígeno/metabolismo , Agua de Mar/efectos adversos , Células A549 , Lesión Pulmonar Aguda/metabolismo , Animales , Apoptosis , Proliferación Celular , Chaperón BiP del Retículo Endoplásmico , Humanos , Pulmón/metabolismo , Masculino , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA