Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Langmuir ; 39(8): 2922-2931, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36786432

RESUMEN

Hydrophobic nanoparticles (NPs) in water were considered unstable because they lack the repulsive electrostatic interaction and steric effect to prevent aggregation. In this study, porous hydrophobic NPs of two star-shaped giant molecules, POSS-(R)8, were found to be stable in water and able to retain their kinetic stability in a wide range of temperatures, pH values, and ionic strengths. Unlike the solid hydrophobic NPs that aggregate even with the negative zeta potential (ζ) induced by surface-structured hydrogen-bonded (SHB) water, the porous morphology of POSS-(R)8 NPs reduces the entropically driven hydrophobic effect to prevent aggregation. With the porous morphology, the hydrophobic NPs are stable without the hydrophilic or charged surface functional groups and demonstrate good encapsulation capability. The morphological factor of colloids is thus one of the missing pieces in the theory of colloidal stability that extends our understanding of colloidal science.

2.
Macromol Rapid Commun ; 44(1): e2200297, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35621302

RESUMEN

Molecules based on benzimidazolone-dioxazine are known as blue/violet pigments and have been commercialized for decades. However, unfavorable solubility limits the application of these structures as building blocks of conjugated polymers despite their low band gaps. Herein, a series of donor-acceptor conjugated polymers containing soluble benzimidazolone-dioxazine structures as the acceptors and oligothiophene as donors are synthesized and investigated. With increasing numbers of thiophene rings, the steric hindrance diminishes and high molecular weight polymers can be achieved, leading to an improved performance in organic field effect transistor devices. The hole mobility of polymers with three to six thiophene units is in the order of 10-1 cm2 V-1 s -1 . Among all the polymers, polymer P3 with three thiophene units between benzimidazolone-dioxazine structures shows the best hole mobility of 0.4 cm2 V-1 s -1 . Grazing-incidence wide-angle X-ray scattering results reveal that the high mobility of organic field-effect transistors (OFETs) can be accredited by matched donor-acceptor packing in the solid thin films.


Asunto(s)
Vendajes , Bencimidazoles , Polímeros , Tiofenos
3.
J Am Chem Soc ; 144(17): 7768-7777, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35417167

RESUMEN

Approaching single-crystal-like morphology has always been important in driving materials toward their optimal properties. With only orientational order, liquid crystal (LC) materials require dual-axis orientational control to optimize their structural order in the bulk phase. However, current external guiding fields such as electrical, magnetic, and mechanical guiding fields are less effective in aligning amphiphilic LCs. In this study, water is developed as an excellent structural stabilizer and orientation-directing agent of an amphiphilic discotic molecule (AD) in the water-induced self-assembly (WISA) process. Thermal analysis and structural characterization results show that water increases the stability and domain sizes of the hexagonal columnar (Colh) phase of the AD by co-assembling with the ADs to form bulk artificial water channels (AWCs). Moreover, through control over the nucleation conditions (degree of supercooling and location of nucleation), dual-axis alignment in both the planar and vertical growth of the AWCs is achieved by applying water as the guiding field in the directional WISA. With precise control over the hierarchical structures, the bulk AWC array of the AD delivers excellent salt rejection properties and water permeability. Considering that all the amphiphilic LCs have hydrophilic segments, these new roles of water in the WISA process could launch the further development of functional amphiphilic LCs by providing a dynamic interaction and a readily available guiding field.


Asunto(s)
Acuaporinas , Cristales Líquidos , Interacciones Hidrofóbicas e Hidrofílicas , Cristales Líquidos/química , Cloruro de Sodio , Agua/química
4.
J Am Chem Soc ; 144(21): 9390-9398, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35587710

RESUMEN

The shapeshifting behavior for synthetic matters was found at either the molecular or supramolecular level, but the connection between shapeshifting at the two hierarchical levels remains missing. In this study, an 8-arm star giant molecule, NPOSS, was synthesized to connect the molecular and supramolecular shapeshifting. Controlling the conditions of bulk self-assembly allowed us to bring NPOSS into three different Ostwald's stages of nucleation. The high conformational flexibility of NPOSS facilitates molecular shapeshifting and allows NPOSS to take the discotic, rod-like and star-like geometries in different Ostwald's stages. Simultaneous changes in the supramolecular scaffolds were observed as the discotic, rod-like and star-like NPOSS molecules self-assembled into the supramolecular scaffolds of 1D columns, 2D lamellae, and 3D networks, respectively. These changes in the hierarchical structures also affect the CO2 affinity of NPOSS. Therefore, the connection between the molecular/supramolecular shapeshifting and the structure-driven property changes of NPOSS were established by taking advantage of the high conformational freedom of the 8-arm star giant molecule and its diverse self-assembly pathways leading to the different Ostwald's stages.


Asunto(s)
Conformación Molecular
5.
Chemistry ; 26(27): 5942-5945, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32153063

RESUMEN

To turn on the fluorescence of the native green fluorescence protein (GFP) chromophore, 4-hydroxybenzylidene-dimethylimidazolinone (HBDI), in an artificial supramolecular system has been a challenging task, because it requires high local environmental rigidity. This work shows that the formation of H-aggregates of an HBDI-containing organogelator results in two orders of magnitude fluorescence enhancement (Φf =2.9 vs. 0.02 %), in which the inter-HBDI OH⋅⋅⋅OH H-bonds play a crucial role. The aggregation-induced fluorescence enhancement of HBDI has important implications on the origin of the high fluorescence quantum efficiency of HBDI in the GFP ß-barrel and on the supramolecular strategy for a full fluorescence recovery of HBDI. These results reveal a new approach to designing rigid chromophore aggregates for high-performance optoelectronic properties.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Fluorescencia , Enlace de Hidrógeno , Estructura Molecular
6.
Angew Chem Int Ed Engl ; 57(41): 13454-13458, 2018 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-30113731

RESUMEN

We report herein a series of tetrablock-mimic azobenzene-containing [60]fullerene dyads that form supramolecular liquid crystals (LCs) from phase-segregated two-dimensional (2D) crystals. The unique double-, triple-, and quadruple-layer packing structure of fullerenes in the 2D crystals leads to different smectic supramolecular LC phases, and novel LC phase transitions were observed upon changes in the fullerene packing layer number in the 2D crystals. Interestingly, by combining the LC properties with 2D crystals, these materials show excellent electron mobility in the order of 10-3  cm2 V-1 s-1 , despite their relatively low fullerene content. Our results provide a novel method to manipulate 2D crystal layer thickness, with promising applications in optoelectronic devices.

7.
Anal Chem ; 89(5): 3043-3050, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28192969

RESUMEN

We have recently demonstrated a methodology to estimate the percent crystallinity (PC) of polymers directly with Raman spectroscopy and multivariate curve resolution (MCR) by alternating least-squares (ALS). In the MCR-ALS methodology, the Raman spectrum of a semicrystalline polymer is separated into two constituent components (crystalline and molten/amorphous) and their corresponding concentrations. The methodology necessitates that the Raman spectrum at any temperature be a linear combination of two MCR spectral components (one molten and one crystalline). This is true in the case of simple systems such as crystalline pendant alkyl domains in polymers (Samuel et al. Anal. Chem. 2016, 88, 4644). However, in the case of main chain polymer crystals (e.g., polyethylene), the situation can be complicated owing to several molecular changes in the lattice in addition to conformational reorganizations during melting. Under this circumstance, a simple two-state model may not be adequate and we describe the modifications required to treat such systems, keeping the basic principles of the proposed methodology unchanged. A comparative study with wide-angle X-ray scattering (WAXS) and Raman spectroscopy is also performed to substantiate our findings. In addition to estimating percent crystallinity (PC), our methodology is capable of revealing additional information, such as interchain interactions in crystal lattice, that in principle will help distinguishing polymorphic transformations, subtle changes in lamellar lattice dimensions, and other phase changes in polymers.

8.
Angew Chem Int Ed Engl ; 56(44): 13819-13823, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-28872747

RESUMEN

We synthesized and characterized methylammonium (MA) mixed tri-halide tin perovskites (MASnIBr2-x Clx ) for carbon-based mesoscopic solar cells free of lead and hole-transporting layers. Varied SnCl2 /SnBr2 ratios yielded tin perovskites with three halides (I, Br, and Cl) co-crystallized inside the tin-perovskite. When the SnCl2 proportion was ≥50 % (x≥1), phase separation occurred to give MASnI3-y Bry and MASnCl3-z Brz in the stoichiometric proportions of their precursors, confirmed by XRD. A device with MASnIBr1.8 Cl0.2 (SnCl2 =10 %) showed the best photovoltaic performance: JSC =14.0 mA cm-2 , VOC =380 mV, FF=0.573, and PCE=3.1 %, and long-term stability. Electrochemical impedance spectra (EIS) show superior charge recombination and dielectric relaxation properties for the MASnIBr1.8 Cl0.2 cell. Transient PL decays showed the intrinsic problem of tin-based perovskites with average lifetimes less than 100 ps.

9.
Chem Asian J ; 19(13): e202400269, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38619083

RESUMEN

Described is a new synthetic route to bis(2-hydroxy-3,5-di-t-butylphenyl)methanone and its derivatives. The combined esterification/photo-Fries rearrangement approach enables a modular preparation of keto-bridged polyphenols. This protecting group-free process is highly atom- and step-economic, and a scalable production was easily achieved in the continuous-flow mode.

10.
J Am Chem Soc ; 134(18): 7780-7, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22537051

RESUMEN

This paper reports a comprehensive study on the synthesis and self-assembly of two model series of molecular shape amphiphiles, namely, hydrophilic [60]fullerene (AC(60)) tethered with one or two polystyrene (PS) chain(s) at one junction point (PS(n)-AC(60) and 2PS(n)-AC(60)). The synthesis highlighted the regiospecific multiaddition reaction for C(60) surface functionalization and the Huisgen 1,3-dipolar cycloaddition between alkyne functionalized C(60) and azide functionalized polymer to give rise to shape amphiphiles with precisely defined surface chemistry and molecular topology. When 1,4-dioxane/DMF mixture was used as the common solvent and water as the selective solvent, these shape amphiphiles exhibited versatile self-assembled micellar morphologies which can be tuned by changing various parameters, such as molecular topology, polymer tail length, and initial molecular concentration, as revealed by transmission electron microscopy and light scattering experiments. In the low molecular concentration range of equal or less than 0.25 (wt) %, micellar morphology of the series of PS(n)-AC(60) studied was always spheres, while the series of 2PS(n)-AC(60) formed vesicles. Particularly, PS(44)-AC(60) and 2PS(23)-AC(60) are synthesized as a topological isomer pair of these shape amphiphiles. PS(44)-AC(60) formed spherical micelles while 2PS(23)-AC(60) generated bilayer vesicles under identical conditions. The difference in the self-assembly of PS(n)-AC(60) and 2PS(n)-AC(60) was understood by the molecular shape aspect ratio. The stretching ratio of PS tails decreased with increasing PS tail length in the spherical micelles of PS(n)-AC(60), indicating a micellar behavior that changes from small molecular surfactant-like to amphiphilic block copolymer-like. For the series of PS(n)-AC(60) in the high molecular concentration range [>0.25 (wt) %], their micellar morphological formation of spheres, cylinders, and vesicles was critically dependent upon both the initial molecular concentration and the PS tail length. On the other hand, the series of 2PS(n)-AC(60) remained in the state of bilayer vesicles in the same concentration range. Combining both of the experimental results obtained in the low and high molecular concentrations, a systematic morphological phase diagram was constructed for the series of PS(n)-AC(60) with different PS tail lengths. The versatile and concentration-sensitive phase behaviors of these molecular shape amphiphiles are unique and have not been systematically explored in the traditional surfactants and block copolymers systems.

11.
J Phys Chem B ; 126(6): 1334-1340, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35113544

RESUMEN

Water, in addition to acting as a solvent, plays a constructional role in aqueous self-assembly. The hydrophobic molecule of POSS-PDI-POSS (POSS = polyhedral oligomeric silsesquioxanes, PDI = perylene diimide) has a shape anisotropy in which POSS is a ball-like bulky group and PDI is a flat aromatic group. The self-assembly of this molecule in water created assemblies with inner spaces due to the steric effect, which suppressed aromatic interactions of PDI and trapped water for the colloidal stability. By replacing POSS with dodecyl (C12), C12-PDI-C12 aggregated with extended aromatic interaction of PDI and less inner water. The resulting aggregates tended to agglomerate and precipitate. This discovery extended the scope of aqueous self-assembly by using the building blocks without amphiphilicity and created knowledge for biophysics.


Asunto(s)
Agua , Interacciones Hidrofóbicas e Hidrofílicas , Agua/química
12.
Science ; 376(6588): 73-77, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35175829

RESUMEN

If perovskite solar cells (PSCs) with high power conversion efficiencies (PCEs) are to be commercialized, they must achieve long-term stability, which is usually assessed with accelerated degradation tests. One of the persistent obstacles for PSCs has been successfully passing the damp-heat test (85°C and 85% relative humidity), which is the standard for verifying the stability of commercial photovoltaic (PV) modules. We fabricated damp heat-stable PSCs by tailoring the dimensional fragments of two-dimensional perovskite layers formed at room temperature with oleylammonium iodide molecules; these layers passivate the perovskite surface at the electron-selective contact. The resulting inverted PSCs deliver a 24.3% PCE and retain >95% of their initial value after >1000 hours at damp-heat test conditions, thereby meeting one of the critical industrial stability standards for PV modules.

13.
ACS Appl Mater Interfaces ; 13(32): 38365-38374, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34351125

RESUMEN

The development of photothermal materials (PTMs) for solar steam generation (SSG) has gained tremendous attention in response to the global clean water scarcity issue. However, the investigation in employing organic small-molecule PTMs for SSG applications is rarely found due to their narrow optical absorption range to harvest solar energy and insufficient photostability for long-term use. Herein, we employ a diketopyrrolopyrrole (DPP) core unit together with electron-withdrawing (EW) endcaps and siloxane side chains to introduce stronger intramolecular charge transfer (ICT) characteristics as well as the hydrophobic character. The enhanced ICT characteristics of DPP derivatives render a broad optical absorption range, less emission, and a high nonradiative decay rate for efficient solar energy harvesting and photothermal effects. Meanwhile, the hydrophobic nature of these DPP derivatives allows the facile fabrication of novel Janus photothermal membranes for effective water vaporization and solar-to-vapor conversion efficiency. By embedding DPP derivatives to the SSG device, we showed that the solar-to-vapor efficiency can reach up to 71.8% under relatively low visible light power (∼700 W m-2), which is, on average, 2.66 times higher than that of bulk water of similar dimension. Moreover, this report demonstrates the great potential of conjugated small molecules for photothermal applications, owing to their versatility and flexibility in structural engineering and its diminishing radiative decay properties. This may inspire more innovation and advancement in SSG applications.

14.
Nanoscale ; 13(7): 4295-4300, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33595571

RESUMEN

Giant shape amphiphiles (GSA) are giant molecules made with nano-building blocks that have distinct shapes. The incompatible packing behaviors of the nano-building blocks of GSA could create cavities within certain conformers of the GSA, but the host-guest chemistry of GSA has not been explored yet. In this study, POSS-PDI-POSS (PPP), which is made by connecting two nano-cubes, isobutyl-polyhedral oligomeric silsesquioxanes (POSS), to a conjugated π-conjugated core, perylene diimide (PDI), is demonstrated as a novel acyclic synthetic host. In its bent conformer, PPP shows a cavity next to its PDI core. Via forming host-guest complexes with π-conjugated guests such as pyrene and perylene, PPP is found to transform from the bent-conformer into the extended-conformer, creating the steric features to accommodate guest molecules. Subsequent thermal annealing of the host-guest complexes removes the π-conjugated guests and restores the bent conformation and photophysical properties of PPP, which verifies that PPP, as a novel acyclic host, is capable of dynamic host-guest assembly. Moreover, the results prove that cavities at the molecular level can be created by connecting nano-building blocks with distinct shapes. This finding may inspire developments in the host-guest chemistry of GSA and nanomaterial innovation.

15.
Nanoscale Adv ; 3(1): 173-176, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36131877

RESUMEN

Evolving synthetic molecules toward complex structures is a major goal in supramolecular chemistry. Increasing the number of clips in a unimolecular multi-clip (UMC), although vital to elevate the complexity of supramolecular architectures, often prevents the UMC from forming host-guest complexes in the bulk phase. To overcome this difficulty, adaptive chemistry was applied to develop a novel adaptive unimolecular quaternary clip (Q-clip). The Q-clip is intrinsically amorphous, but self-organizes with exclusively 4 eq. of allosteric activators (NDI) to form the Q-clip : NDI4 complexes and a supramolecular lamellar structure in the bulk. The adaptive assembly is fast and allows us to locate the adaptive assembly area of Q-clip : NDI4 complexes in the amorphous Q-clip film. Our results provide new insights into the design of adaptive UMCs for the evolution toward complex structures and supramolecular functional materials.

16.
ACS Nano ; 15(9): 14885-14890, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34410689

RESUMEN

Inspired by the induced-fit mechanism in nature, we developed the process of water-induced self-assembly (WISA) to make water an active substrate that regulates the self-assembly and function of amphiphilic discotic molecules (ADMs). The ADM is an isotropic liquid that self-assembles only when in contact with water. Characterization results indicate that water fits into the hydrophilic core of the ADMs and induces the formation of a hexagonal columnar phase (Colh), where each column contains a hydrated artificial water channel (AWC). The hydrated AWCs are adaptive rather than static; the dynamic incorporation/removal of water results in the reversible assembly/disassembly of the adaptive AWCs (aAWCs). Furthermore, its dynamic characteristics can enable water to act as an orientation-directional guest molecule that controls the growth direction of the aAWCs. Well-aligned aAWC arrays that showed the ability of water transport were obtained via a "directional WISA" method. In WISA, water thus governs the supramolecular chemistry and function of synthetic molecules as it does with natural materials. By making water an active component in adaptive chemistry and enabling host molecules to dynamically interact with water, this adaptive aquatic material may motivate the development of synthetic molecules further toward biomaterials.


Asunto(s)
Acuaporinas , Agua
17.
JACS Au ; 1(4): 375-379, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-34467302

RESUMEN

A strategy to obtain chiral silica using an achiral stereoregular polymer with polyhedral oligomeric silsesquioxane (POSS) side chains is described herein. The preferred helical conformation of the POSS-containing polymer could be achieved by mixing isotactic polymethacrylate-functionalized POSS (it-PMAPOSS) and a chiral dopant. The array structure of POSS molecules, which are placed along the helical conformation, is memorized even after removing the chiral dopant at high temperatures, leading to a chiral silica compound with exclusive optical activity after calcination.

18.
J Chem Phys ; 132(20): 204903, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20515110

RESUMEN

A series of inclusion complexes of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) with beta-cyclodextrin (beta-CD) was prepared. Their formation, structure, and dynamics were investigated by solution two-dimensional rotating-frame Overhauser effect spectroscopy (2D ROESY) and one-dimensional (1D) and 2D solid-state (13)C NMR. The inclusion complexes between the PEO-b-PPO-b-PEO copolymers and the beta-CDs were formed in aqueous solution and detected by 2D ROESY. The high efficiency of cross polarization and spin diffusion experiments in (13)C solid-state NMR showed that the mobility of the PPO blocks dramatically decreases after beta-CD complexation, indicating that they are selectively incorporated onto the PPO blocks. The hydrophobic cavities of beta-CD restrict the PPO block mobility, which is evidence of the formation of inclusion complexes in the solid state. The 2D wide-line separation NMR experiments suggested that beta-CDs only thread onto the PPO blocks while forming the inclusion complexes. The stoichiometry of inclusion complexes was studied using (1)H NMR, and a 3:1 (PO unit to beta-CD) was found for all inclusion complexes, which indicated that the number of threaded beta-CDs was only dependent on the molecular weight of the PPO blocks. 1D wide angle x-ray diffraction studies demonstrated that the beta-CD in the inclusion complex formed a channel-like structure that is different from the pure beta-CD crystal structure.

19.
ACS Appl Mater Interfaces ; 12(1): 1169-1178, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31840487

RESUMEN

The physical properties, packing, morphology, and semiconducting performance of a planar π-conjugated system can be effectively modified by introducing side chains and substituent groups, both of which can be complementary to the π framework in changing the intermolecular association, frontier molecular orbital energy, optical band gap, and others. We herein show that installation of end-capped electron-withdrawing groups (EWGs), such as dicyanovinyl (-DCV), 3-ethylrhodanine (-RD), and 2-(3-oxo-indan-1-ylidene)-malononitrile (-INCN), together with siloxane side chains to the backbones of dithienyldiketopyrrolopyrrole (DPPT), such as DPPT-Si-DCV, DPPT-Si-RD, and DPPT-Si-INCN, can greatly improve its solubility, air stability, and film morphology to serve as an n-channel in thin-film transistor fabrication. The EWGs attached to the DPPT core narrowed the optical band gap (Egopt) and changed the highest occupied molecular orbital and the lowest unoccupied molecular orbital energies (EHOMO and ELUMO), making them suitable for n-channel field-effect transistor (FET) applications. The benefits of introducing siloxane side chains to the DPPT core include enhanced solubility, low crystallization barrier, enantiotropic phase behavior, and much improved FET performance. The DPPT-Si-INCN film displayed low-lying HOMO (-5.82 eV) and LUMO (-4.60 eV) energy levels and an optical band gap as low as 1.22 eV, all of which suggest that this derivative can be quite resistant toward aerial oxidation. Thin films of these derivatives were prepared by the solution-shear method. A comparison of the solution-sheared films indicated that the molecular packing motif of DPPT-Si-INCN film was somehow different from that of DPPT-Si-DCV and DPPT-Si-RD, in which the π-π stacking tended to align orthogonally to the shearing direction. This specific π-π stacking alignment could have an impact on the electron mobility (µe) values in transistors based on the solution-sheared films.

20.
ACS Nano ; 14(3): 2939-2946, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32100990

RESUMEN

Polymers are generally regarded as thermal insulators. The efficient heat transfer observed in the low-dimensional polymers in the literature mainly result from the larger crystallinity or improved polymer chain orientation in the low-dimensional polymers. However, the role of the amorphous domain on heat transfer in polymers remains unexplored. In this work, we report that the semicrystalline nylon polymer nanofibers can exhibit a very large thermal conductivity of 59.1 ± 3.1 W m-1 K-1 and the heat transfer in the semicrystalline polymer nanofibers was time-dependent. The thermal conductivity of the nanofibers could be modulated to span 3 orders of magnitude from being nearly insulated (∼0.27 ± 0.02 W m-1 K-1) to being highly thermal conductive after annealing (∼59.1 ± 3.1 W m-1 K-1). The time-dependent thermal conductivity was observed at a temperature lower than the gamma transition temperature of the polymer and was a result of the physical aging of the semicrystalline polymer. A phenomenological model was adopted to explain the time-dependent heat transfer of the semicrystalline nanofibers. The physical aging reduced the configuration disorder in the polymer and caused the heat transfer of the semicrystalline polymer to increase during the annealing process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA