Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 20(3)2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30678307

RESUMEN

Thioridazine (THD) is a common phenothiazine antipsychotic drug reported to suppress growth in several types of cancer cells. We previously showed that THD acts as an antiglioblastoma and anticancer stem-like cell agent. However, the signaling pathway underlying autophagy and apoptosis induction remains unclear. THD treatment significantly induced autophagy with upregulated AMPK activity and engendered cell death with increased sub-G1 in glioblastoma multiform (GBM) cell lines. Notably, through whole gene expression screening with THD treatment, frizzled (Fzd) proteins, a family of G-protein-coupled receptors, were found, suggesting the participation of Wnt/ß-catenin signaling. After THD treatment, Fzd-1 and GSK3ß-S9 phosphorylation (inactivated form) was reduced to promote ß-catenin degradation, which attenuated P62 inhibition. The autophagy marker LC3-II markedly increased when P62 was released from ß-catenin inhibition. Additionally, the P62-dependent caspase-8 activation that induced P53-independent apoptosis was confirmed by inhibiting T-cell factor/ß-catenin and autophagy flux. Moreover, treatment with THD combined with temozolomide (TMZ) engendered increased LC3-II expression and caspase-3 activity, indicating promising drug synergism. In conclusion, THD induces autophagy in GBM cells by not only upregulating AMPK activity, but also enhancing P62-mediated autophagy and apoptosis through Wnt/ß-catenin signaling. Therefore, THD is a potential alternative therapeutic agent for drug repositioning in GBM.


Asunto(s)
Autofagia/efectos de los fármacos , Cateninas/metabolismo , Glioma/metabolismo , Tioridazina/farmacología , Apoptosis/efectos de los fármacos , Beclina-1/metabolismo , Western Blotting , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
2.
Int J Syst Evol Microbiol ; 68(8): 2424-2430, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29916796

RESUMEN

A Gram-stain-positive strain, BS-W1T, was isolated from a traditional fermented ma bamboo shoots (Dendrocalamus latiflorus Munro) product of Taiwan. It was rod-shaped, non-motile, non-haemolytic, asporogenous, facultatively anaerobic, heterofermentative and did not exhibit catalase or oxidase activities. Comparative analysis of 16S rRNA, pheS, rpoA and gyrB gene sequences demonstrated that the novel strain BS-W1T was a member of the genus Lactobacillus. On the basis of 16S RNA gene sequence similarity, the type strains of Lactobacillus oryzae (94.4 % similarity), Lactobacillus acidifarinae (93.8 %), Lactobacillus namurensis (93.7 %) and Lactobacillus zymae (93.7 %) were the closest neighbours to strain BS-W1T. The pheS, rpoA and gyrB gene sequence similarities of strain BS-W1T to closely related these species were less than 80.2 %. DNA-DNA reassociation values with these type strains were 21.0-33.8 %. The DNA G+C content was 46.6 mol%. The average nucleotide identity values between BS-W1T and the closest relatives were lower than 70 %. Phenotypic and genotypic features demonstrated that the strain represents a novel species of the genus Lactobacillus, for which the name Lactobacillus bambusae sp. nov. is proposed. The type strain is BS-W1T (=BCRC 80970T=NBRC 112377T).


Asunto(s)
Alimentos Fermentados/microbiología , Microbiología de Alimentos , Lactobacillus/clasificación , Verduras/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Fermentación , Genes Bacterianos , Lactobacillus/genética , Lactobacillus/aislamiento & purificación , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Taiwán
3.
Biochim Biophys Acta ; 1853(8): 1796-807, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25920809

RESUMEN

GSK3ß binding of GSKIP affects neurite outgrowth, but the physiological significance of PKA binding to GSKIP remains to be determined. We hypothesized that GSKIP and GSK3ß mediate cAMP/PKA/Drp1 axis signaling and modulate mitochondrial morphology by forming a working complex comprising PKA/GSKIP/GSK3ß/Drp1. We demonstrated that GSKIP wild-type overexpression increased phosphorylation of Drp1 S637 by 7-8-fold compared to PKA kinase-inactive mutants (V41/L45) and a GSK3ß binding-defective mutant (L130) under H2O2 and forskolin challenge in HEK293 cells, indicating that not only V41/L45, but also L130 may be involved in Drp1-associated protection of GSKIP. Interestingly, silencing either GSKIP or GSK3ß but not GSK3α resulted in a dramatic decrease in Drp1 S637 phosphorylation, revealing that both GSKIP and GSK3ß are required in this novel PKA/GSKIP/GSK3ß/Drp1 complex. Moreover, overexpressed kinase-dead GSK3ß-K85R, which retains the capacity to bind GSKIP, but not K85M which shows total loss of GSKIP-binding, has a higher Drp1 S637 phosphorylation similar to the GSKIP wt overexpression group, indicating that GSK3ß recruits Drp1 by anchoring rather than in a kinase role. With further overexpression of either V41/L45P or the L130P GSKIP mutant, the elongated mitochondrial phenotype was lost; however, ectopically expressed Drp1 S637D, a phosphomimetic mutant, but not S637A, a non-phosphorylated mutant, restored the elongated mitochondrial morphology, indicating that Drp1 is a downstream effector of direct PKA signaling and possibly has an indirect GSKIP function involved in the cAMP/PKA/Drp1 signaling axis. Collectively, our data revealed that both GSKIP and GSK3ß function as anchoring proteins in the cAMP/PKA/Drp1 signaling axis modulating Drp1 phosphorylation.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , GTP Fosfohidrolasas/metabolismo , Glucógeno Sintasa Quinasa 3/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Represoras/fisiología , Células Cultivadas , Dinaminas , GTP Fosfohidrolasas/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias/genética , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/genética , Fosforilación , Proteínas Represoras/metabolismo , Transducción de Señal/genética
4.
Cell Death Discov ; 8(1): 282, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35680784

RESUMEN

For past two decades, p53 has been claimed as the primary sensor initiating apoptosis. Under severe cellular stress, p53 transcriptional activity activates BH3-only proteins such as Bim, Puma, or Noxa to nullify the inhibitory effects of anti-apoptotic proteins on pro-apoptotic proteins for mitochondrial outer membrane permeabilization. Cellular stress determines the expression level of p53, and the amount of p53 corresponds to the magnitude of apoptosis. However, our studies indicated that Bim and Puma are not the target genes of p53 in three cancer models, prostate cancer, glioblastoma, and osteosarcoma. Bim counteracted with Bcl-xl to activate apoptosis independently of p53 in response to doxorubicin-induced severe DNA damage in prostate cancer. Moreover, the transcriptional activity of p53 was more related to cell cycle arrest other than apoptosis for responding to DNA damage stress generated by doxorubicin in prostate cancer and glioblastoma. A proteasome inhibitor that causes protein turnover dysfunction, bortezomib, produced apoptosis in a p53-independent manner in glioblastoma and osteosarcoma. p53 in terms of both protein level and nuclear localization in combining doxorubicin with bortezomib treatment was obviously lower than when using DOX alone, inversely correlated with the magnitude of apoptosis in glioblastoma. Using a BH3-mimetic, ABT-263, to treat doxorubicin-sensitive p53-wild type and doxorubicin-resistant p53-null osteosarcoma cells demonstrated only limited apoptotic response. The combination of doxorubicin or bortezomib with ABT-263 generated a synergistic outcome of apoptosis in both p53-wild type and p53-null osteosarcoma cells. Together, this suggested that p53 might have no role in doxorubicin-induced apoptosis in prostate cancer, glioblastoma and osteosarcoma. The effects of ABT-263 in single and combination treatment of osteosarcoma or prostate cancer indicated a dual control to regulate apoptosis in response to severe cellular stress. Whether our findings only apply in these three types of cancers or extend to other cancer types remains to be explored.

5.
Cell Cycle ; 21(11): 1153-1165, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35311459

RESUMEN

We examined the apoptotic response of two glioblastoma cells, p53 wild type U87 and p53 mutated T98G, to doxorubicin, bortezomib, and vorinostat, which respectively target DNA, 26S proteasome and histone deacetylase, to clarify p53's function in apoptosis. We demonstrated that doxorubicin induced apoptosis in U87 cells but not in T98G cells. The level of p53 was definitively correlated to the extent of DNA damage and apoptosis initiation. Dominant-negative p53 reduced p21 expression, but did not affect doxorubicin-induced apoptosis, so the transcriptional activity of p53 seemed not to participate in doxorubicin-induced apoptosis. However, p53 concentrated into the nucleus during heavy apoptosis. Bortezomib could induce apoptosis in U87 with high sensitivity and T98G cells with low sensitivity. In contrast, vorinostat promoted apoptosis in both U87 and T98G cells and reduced the basal level of p53 in U87 cells, indicating that p53 played no role in the vorinostat-induced apoptosis. To clearly define the role of p53 in bortezomib- and doxorubicin-induced apoptosis, we combined doxorubicin with bortezomib to treat U87 cells to assess this combination's effect on apoptosis and p53 status. Interestingly, the combination of doxorubicin with bortezomib engendered compound stress, resulting in a synergistic outcome for apoptosis in U87 cells. However, the amounts of p53 in the total count and in the nucleus were much lower with the combination than with doxorubicin alone, suggesting that p53 played no role in either the compound stress, doxorubicin-only or bortezomib-induced apoptosis.


Asunto(s)
Glioblastoma , Apoptosis , Bortezomib/farmacología , Línea Celular Tumoral , Doxorrubicina/farmacología , Glioblastoma/genética , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Vorinostat/farmacología
6.
PLoS One ; 17(1): e0262138, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35051222

RESUMEN

We previously revealed the origin of mammalian simple-type glycogen synthase kinase interaction protein (GSKIP), which served as a scavenger and a competitor in the Wnt signaling pathway during evolution. In this study, we investigated the conserved and nonconserved regions of the composite-type GSKIP by utilizing bioinformatics tools, site-directed mutagenesis, and yeast two-hybrid methods. The regions were denoted as the pre-GSK3ß binding site, which is located at the front of GSK3ß-binding sites. Our data demonstrated that clustered mitochondria protein 1 (CLU1), a type of composite-type GSKIP that exists in the mitochondria of all eukaryotic organisms, possesses the protein known as domain of unknown function 727 (DUF727), with a pre-GSK3ß-binding site and a mutant GSK3ß-binding flanking region. Another type of composite-type GSKIP, armadillo repeat containing 4 (ARMC4), which is known for cilium movement in vertebrates, contains an unintegrated DUF727 flanking region with a pre-GSK3ß-binding site (115SPxF118) only. In addition, the sequence of the GSK3ß-binding site in CLU1 revealed that Q126L and V130L were not conserved, differing from the ideal GSK3ß-binding sequence of simple-type GSKIP. We further illustrated two exceptions, namely 70 kilodalton heat shock proteins (Hsp70/DnaK) and Mitofilin in nematodes, that presented an unexpected ideal GSK3ß-binding region with a pre-GSK3ß sequence; this composite-type GSKIP could only occur in vertebrate species. Furthermore, we revealed the importance of the pre-GSK3ß-binding site (118F or 118Y) and various mutant GSK3ß-binding sites of composite-type GSKIP. Collectively, our data suggest that the new composite-type GSKIP starts with a DUF727 domain followed by a pre-GSK3ß-binding site, with the subsequent addition of the GSK3ß-binding site, which plays vital roles for CLU1, Mitofilin, and ARMC4 in mitochondria and Wnt signaling pathways during evolution.


Asunto(s)
Proteínas del Dominio Armadillo/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Mitocondrias/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas del Dominio Armadillo/química , Proteínas del Dominio Armadillo/genética , Sitios de Unión , Clonación Molecular , Secuencia Conservada , Evolución Molecular , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Filogenia , Unión Proteica , Conformación Proteica , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas Represoras/química , Análisis de Secuencia de ADN , Técnicas del Sistema de Dos Híbridos , Vía de Señalización Wnt
7.
Org Biomol Chem ; 9(9): 3205-16, 2011 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-21423988

RESUMEN

A number of 2,3-diarylquinoline derivatives were synthesized and evaluated for antiproliferative activities against the growth of six cancer cell lines including human hepatocellular carcinoma (Hep G2 and Hep 3B), non-small cell lung cancer (A549 and H1299), and breast cancer (MCF-7 and MDA-MB-231) cell lines. The preliminary results indicated that 6-fluoro-2,3-bis{4-[2-(piperidin-1-yl)ethoxy]phenyl}quinoline (16b) was one of the most active compounds against the growth of Hep 3B, H1299, and MDA-MB-231 with a GI(50) value of 0.71, 1.46, and 0.72 µM respectively which was more active than tamoxifen. Further investigations have shown that 16b induced cell cycle arrest at G2/M phase followed by DNA fragmentation via an increase in the protein expression of Bad, Bax and decrease in Bcl-2, and PARP which consequently cause cell death.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Quinolinas/síntesis química , Línea Celular Tumoral , Humanos , Estructura Molecular , Quinolinas/farmacología , Relación Estructura-Actividad
8.
Biomolecules ; 11(3)2021 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805672

RESUMEN

Mitochondrial fission and fusion cycles are integrated with cell cycle progression. Here we first re-visited how mitochondrial ETC inhibition disturbed mitosis progression, resulting in multipolar spindles formation in HeLa cells. Inhibitors of ETC complex I (rotenone, ROT) and complex III (antimycin A, AA) decreased the phosphorylation of Plk1 T210 and Aurora A T288 in the mitotic phase (M-phase), especially ROT, affecting the dynamic phosphorylation status of fission protein dynamin-related protein 1 (Drp1) and the Ser637/Ser616 ratio. We then tested whether specific Drp1 inhibitors, Mdivi-1 or Dynasore, affected the dynamic phosphorylation status of Drp1. Similar to the effects of ROT and AA, our results showed that Mdivi-1 but not Dynasore influenced the dynamic phosphorylation status of Ser637 and Ser616 in Drp1, which converged with mitotic kinases (Cdk1, Plk1, Aurora A) and centrosome-associated proteins to significantly accelerate mitotic defects. Moreover, our data also indicated that evoking mito-Drp1-Ser637 by protein kinase A (PKA) rather than Drp1-Ser616 by Cdk1/Cyclin B resulted in mitochondrial fission via the PINK1/Parkin pathway to promote more efficient mitophagy and simultaneously caused multipolar spindles. Collectively, this study is the first to uncover that mito-Drp1-Ser637 by PKA, but not Drp1-Ser616, drives mitophagy to exert multipolar spindles formation during M-phase.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dinaminas/metabolismo , Dinámicas Mitocondriales , Mitofagia , Mitosis , Proteínas Quinasas/metabolismo , Huso Acromático/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Antimicina A/farmacología , Aurora Quinasa A/metabolismo , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Transporte de Electrón/efectos de los fármacos , Células HeLa , Humanos , Hidrazonas/metabolismo , Mitocondrias/metabolismo , Modelos Biológicos , Estrés Oxidativo , Fosforilación , Fosfoserina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Quinazolinonas/metabolismo , Rotenona/farmacología , Quinasa Tipo Polo 1
9.
Cell Death Discov ; 7(1): 275, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34608124

RESUMEN

Apoptosis induced by doxorubicin, bortezomib, or paclitaxel, targeting DNA, 26S proteasome, and microtubules respectively, was assessed in two osteosarcoma cells, p53 wild-type U2OS and p53-null MG63 cells. Doxorubicin-induced apoptosis only occurred in U2OS, not in MG63. In contrast, bortezomib and paclitaxel could drive U2OS or MG63 toward apoptosis effectively, suggesting that apoptosis induced by bortezomib or paclitaxel is p53-independent. The expressions of Bcl2 family members such as Bcl2, Bcl-xl, and Puma could be seen in U2OS and MG63 cells with or without doxorubicin, bortezomib, or paclitaxel treatment. In contrast, another member, Bim, only could be observed in U2OS, not in MG63, under the same conditions. Bim knockdown did not affect the doxorubicin-induced apoptosis in U2OS, suggested that a BH3-only protein other than Bim might participate in apoptosis induced by doxorubicin. Using a BH3-mimetic, ABT-263, to inhibit Bcl2 or Bcl-xl produced a limited apoptotic response in U2OS and MG63 cells, suggesting that this BH3-mimetic cannot activate the Bax/Bak pathway efficiently. Significantly, ABT-263 enhanced doxorubicin- and bortezomib-induced apoptosis synergistically in U2OS and MG63 cells. These results implied that the severe cellular stress caused by doxorubicin or bortezomib might be mediated through a dual process to control apoptosis. Respectively, doxorubicin or bortezomib activates a BH3-only protein in one way and corresponding unknown factors in another way to affect mitochondrial outer membrane permeability, resulting in apoptosis. The combination of doxorubicin with ABT-263 could produce synergistic apoptosis in MG63 cells, which lack p53, suggesting that p53 has no role in doxorubicin-induced apoptosis in osteosarcoma. In addition, ABT-263 enhanced paclitaxel to induce moderate levels of apoptosis.

10.
Bioorg Med Chem ; 18(1): 124-33, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19944612

RESUMEN

The present study describes the synthesis of 2-phenylvinylquinoline (styrylquinoline) and 2-furanylvinylquinoline derivatives and evaluation for their antiproliferative activities. (E)-2-Styrylquinolin-8-ol (14a) was inactive against a 3-cell line panel consisting of MCF-7 (Breast), NCI-H460 (Lung), and SF-268 (CNS). Replacement of the phenyl ring with 5-nitrofuran-2-yl group significantly enhanced antiproliferative activity in which (E)-2-(2-(5-nitrofuran-2-yl)vinyl)quinolin-8-ol (14i) and its 4-substituted derivatives 15-19 exhibited strong inhibitory effects against the growth of all three cancer cells. These compounds were further evaluated for their IC(50) against the growth of MCF-7, LNCaP, and PC3. Results indicated that a hydrogen bond donating oxime derivative 19a was more active than its hydrogen bond accepting methyloxime derivative 19b. For the inhibition of LNCaP, the potency decreased in an order 14i>19a>19b>15>18>16. Compound 14i is the most active with an IC(50) value of 0.35 and 0.14 microM, respectively, against the growth of LNCaP and PC3 cancer cells. Therefore, compound 14i was evaluated by flow cytometric analysis for its effects on cell cycle distributions. Results indicated that 14i effectively induced cell cycle arrest at S phase for both cell lines, which consequently trigger late apoptosis for both LNCaP and PC3 cells.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Quinolinas/química , Quinolinas/farmacología , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias/tratamiento farmacológico , Quinolinas/síntesis química
11.
Cancers (Basel) ; 12(8)2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32764483

RESUMEN

Over the past decades, promising therapies targeting different signaling pathways have emerged. Among these pathways, apoptosis has been well investigated and targeted to design diverse chemotherapies. However, some patients are chemoresistant to these therapies due to compromised apoptotic cell death. Hence, exploring alternative treatments aimed at different mechanisms of cell death seems to be a potential strategy for bypassing impaired apoptotic cell death. Emerging evidence has shown that necroptosis, a caspase-independent form of cell death with features between apoptosis and necrosis, can overcome the predicament of drug resistance. Furthermore, previous studies have also indicated that there is a close correlation between necroptosis and reactive oxygen species (ROS); both necroptosis and ROS play significant roles both under human physiological conditions such as the regulation of inflammation and in cancer biology. Several small molecules used in experiments and clinical practice eliminate cancer cells via the modulation of ROS and necroptosis. The molecular mechanisms of these promising therapies are discussed in detail in this review.

12.
J Cell Biochem ; 108(6): 1325-36, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19830702

RESUMEN

Emerging evidence has shown that GSK3beta plays a pivotal role in regulating the specification of axons and dendrites. Our previous study has shown a novel GSK3beta interaction protein (GSKIP) able to negatively regulate GSK3beta in Wnt signaling pathway. To further characterize how GSKIP functions in neurons, human neuroblastoma SH-SY5Y cells treated with retinoic acid (RA) to differentiate to neuron-like cells was used as a model. Overexpression of GSKIP prevents neurite outgrowth in SH-SY5Y cells. GSKIP may affect GSK3beta activity on neurite outgrowth by inhibiting the specific phosphorylation of tau (ser396). GSKIP also increases beta-catenin in the nucleus and raises the level of cyclin D1 to promote cell-cycle progression in SH-SY5Y cells. Additionally, overexpression of GSKIP downregulates N-cadherin expression, resulting in decreased recruitment of beta-catenin. Moreover, depletion of beta-catenin by small interfering RNA, neurite outgrowth is blocked in SH-SY5Y cells. Altogether, we propose a model to show that GSKIP regulates the functional interplay of the GSK3beta/beta-catenin, beta-catenin/cyclin D1, and beta-catenin/N-cadherin pool during RA signaling in SH-SY5Y cells.


Asunto(s)
Cadherinas/metabolismo , Diferenciación Celular , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Neuronas/metabolismo , Proteínas Represoras/metabolismo , beta Catenina/metabolismo , Ciclo Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Ciclina D1/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Neuronas/citología , Neuronas/enzimología , Fosforilación , Proteínas tau/metabolismo
13.
J Clin Immunol ; 29(3): 319-29, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19089604

RESUMEN

OBJECTIVES: The aim of this study was to evaluate immunity in HIV-uninfected children with bacille Calmette-Guerin-induced disease (BCG-ID) over an 8-year period, with particular emphasis on underlying diseases. METHODS: Patient afflicted with BCG-ID proven by clinical courses, dermatologic features, pathology, specific polymerase chain reaction, and/or spoligotyping were enrolled between 2000 and 2007. Lymphocyte proliferation, polymorphonuclear function, interleukin (IL)-12/23-interferons (IFN)-gamma circuit, and Toll-like receptor 2-associated signaling were investigated. RESULTS: Of the 271,618 total live births who received the BCG vaccine, eight patients (seven males) with BCG-ID were enrolled during an 8-year period and presented as three disseminated, two distant, and three regional BCG-ID. Their age at onset ranged from 1 to 28 months. All had a vaccine-injection scar except for one with lower CD3 and natural killer cells, compatible with severe combined immunodeficiency (SCID) identified by IL-2 receptor common gamma chain (IL2RG) mutation (Arg226Lys). The other SCID patient with de novo IL2RG mutation (Trp74Gly) had more recurrent infections. The third patient with primary autoimmune neutropenia had disseminated BCG-ID extending to abdominal wall. The fourth patient with chronic mucocutaneous candidiasis had regional BCG-ID and impaired lymphocyte proliferation to Candida and BCG antigens. No defective evidence of polymorphonuclear functions, IL-12/23-IFN-gamma circuit, and Toll-like receptor 2-associated signaling was detected in the remaining four patients. CONCLUSION: Immunologic analysis in HIV-uninfected patients with BCG-ID reveals primary immunodeficiency diseases, especially in those with deficiencies in T-cell and neutrophil functions observed in our cohort, including primary autoimmune neutropenia and chronic mucocutaneous candidiasis.


Asunto(s)
Vacuna BCG/efectos adversos , Candida/inmunología , Candidiasis Mucocutánea Crónica/inmunología , Infecciones Oportunistas/inmunología , Inmunodeficiencia Combinada Grave/inmunología , Tuberculosis/prevención & control , Autoinmunidad , Vacuna BCG/administración & dosificación , Candidiasis Mucocutánea Crónica/diagnóstico , Candidiasis Mucocutánea Crónica/etiología , Candidiasis Mucocutánea Crónica/fisiopatología , Proliferación Celular , Estudios de Cohortes , Citocinas/metabolismo , Diagnóstico Diferencial , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Activación de Linfocitos , Masculino , Mutación , Neutropenia/etiología , Infecciones Oportunistas/diagnóstico , Infecciones Oportunistas/etiología , Infecciones Oportunistas/fisiopatología , Receptores de Interleucina-2/genética , Inmunodeficiencia Combinada Grave/diagnóstico , Inmunodeficiencia Combinada Grave/etiología , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/fisiopatología , Taiwán , Receptor Toll-Like 2/metabolismo , Vacunación
14.
Bioorg Med Chem ; 17(21): 7465-76, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19796956

RESUMEN

A number of 6-arylindeno[1,2-c]quinoline derivatives were synthesized and evaluated for their antiproliferative activities against the growth of five cancer cell lines including human hepatocelluar carcinoma (Hep G2, Hep 3B and Hep2.2.1), non-small cell lung cancer (A549 and H1299), and normal diploid embryonic lung cell line (MRC-5). The preliminary results indicated that 9-(3-(dimethylamino)propoxy)-6-(4-(3-(dimethylamino)propoxy)phenyl)-2-fluoro-11H-indeno[1,2-c]quinolin-11-one (14c) was the most potent with GI(50) values of 0.61, 0.67, 0.59, and 0.72 microM against the growth of Hep G2, Hep 3B, Hep 2.2.1, and H1299 cells, respectively. Results have also shown that 2,9-bis(3-(dimethylamino)propoxy)-6-(4-(3-(dimethylamino)propoxy)phenyl)-11H-indeno[1,2-c]quinolin-11-one (17), which exhibited GI(50) of 0.60 and 0.68 microM against the growth of Hep G2 and A549, respectively, was more active than the positive topotecan and irinotecan. Compound 17 was less toxic than topotecan against the growth of normal cell (MRC-5) and therefore, was selected for further evaluation. Results indicated that compound 17 induce cell cycle arrest in G2/M phase, DNA fragmentation, and disrupt the microtubule network in A549 cells. The apoptotic induction may through the cleavage of PARP.


Asunto(s)
Antineoplásicos/síntesis química , Indenos/síntesis química , Quinolinas/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Fragmentación del ADN , Ensayos de Selección de Medicamentos Antitumorales , Fase G2 , Humanos , Indenos/química , Indenos/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Quinolinas/química , Quinolinas/farmacología , Tubulina (Proteína)/metabolismo
15.
Acta Neurochir (Wien) ; 151(9): 1107-11, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19582367

RESUMEN

BACKGROUND: The Wnt signaling pathway has been implicated in colon and other cancers. Nevertheless, few or no mutations of CTNNB1 (beta-catenin) have so far been described in brain cancer. We therefore examined the prevalence of constitutive activation of the Wnt signaling pathway in brain cancer specimens as well as cancer cell lines. METHOD: We used polymerase chain reaction PCR and direct sequencing methods to investigate whether mutations in the CTNNB1 phosphorylation sites S33, S37, S41 and T45 were present in 68 brain tumours, including meningioma, astrocytoma, pituitary adenoma, neuroblastoma, metastasis to the brain, and cell lines. FINDINGS: CTNNB1 gene mutations were not found in either the original brain tumour specimens or the cell lines. However, a missense mutation of CTNNB1 was identified at residue 33, TCT (Ser) --> TGT (Cys) in a patient with lung metastasis to brain. In addition, in vitro functional assay showed that the S33C mutant of beta-catenin did affect transcriptional activity in a TCF-4-luciferase reporter construct. CONCLUSIONS: These results indicate that the mutation of exon 3 of the CTNNB1 gene in brain tumours may be a rare event and yet may be required for a small subset of human metastatic brain tumours.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Predisposición Genética a la Enfermedad/genética , Mutación/genética , Metástasis de la Neoplasia/genética , beta Catenina/genética , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/secundario , Carcinoma/secundario , Dominio Catalítico/genética , Línea Celular Tumoral , Análisis Mutacional de ADN , Exones/genética , Regulación Neoplásica de la Expresión Génica/genética , Frecuencia de los Genes , Marcadores Genéticos , Pruebas Genéticas , Humanos , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia/fisiopatología , Fosforilación , Transducción de Señal/genética , Activación Transcripcional/genética , Proteínas Wnt/genética
16.
Future Med Chem ; 11(8): 833-846, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30724109

RESUMEN

Aim: Blocking receptor tyrosine kinases is a useful strategy for inhibiting the overexpression of EGFR. However, the quality of crystal pocket is an essential issue for virtually identifying new leads for surviving resistance cancer cells. Results: With the examinating crystal pocket quality by the self-docking root-mean-square deviation (RMSD) calculation, we used the two best kinase pockets of mutant EGFR kinases, T790M/L858R and G719S, for virtual screening. After sorting all the docking poses of the 57,177 library compounds by consensus scores, three evidently blocked cellular EGFR phosphorylation in the H1975 and SW48 cell lines. Conclusion: The computationally assessed qualities of crystal pockets of crystal EGFR kinases can help identify new cellular active and target-specific ligands rapidly and at low cost.


Asunto(s)
Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral , Diseño de Fármacos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Receptores ErbB/genética , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Mutación , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
17.
Cell Death Discov ; 5: 131, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31482012

RESUMEN

We previously reported that p53-mediated apoptosis is determined by severity of DNA damage, not by the level of p53, in doxorubicin-treated prostate cancer cells. In addition to doxorubicin, our results here indicated that camptothecin and bortezomib, which are a topoisomerase 1 poison and a 26 S proteasome inhibitor, respectively, could also induce apoptosis in a p53-dependent manner in prostate cancer. Then, we examined whether p53-mediated apoptosis induced by genotoxic and non-genotoxic stress occur in the same or a different way. By using dominant negative p53 to compete with wild-type p53 in transcription activity, we demonstrated that p53-mediated apoptosis in response to doxorubicin- or camptothecin-induced genotoxic stress is transcription-independent. In contrast, p53-mediated apoptosis from bortezomib-induced stress is transcription-dependent. Interestingly, we also found that doxorubicin-induced p21 expression is activated by p53 in transcription-dependent manner, while camptothecin-induced p21 expression is p53-independent. We then investigated the p53 ratio of nucleus to cytosol corresponding to low and high dose doxorubicin, camptothecin, or bortezomib treatment. The results suggested that p53 translocation from cytoplasm to nucleus actively drives cells toward apoptosis in either transcription-dependent or -independent manner for responding to non-genotoxic or genotoxic stress, respectively.

18.
J Clin Med ; 8(10)2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31640277

RESUMEN

Based on the protein kinase A (PKA)/GSK3ß interaction protein (GSKIP)/glycogen synthase kinase 3ß (GSK3ß) axis, we hypothesized that these might play a role in Tau phosphorylation. Here, we report that the phosphorylation of Tau Ser409 in SHSY5Y cells was increased by overexpression of GSKIP WT more than by PKA- and GSK3ß-binding defective mutants (V41/L45 and L130, respectively). We conducted in vitro assays of various kinase combinations to show that a combination of GSK3ß with PKA but not Ca2+/calmodulin-dependent protein kinase II (CaMK II) might provide a conformational shelter to harbor Tau Ser409. Cerebrospinal fluid (CSF) was evaluated to extend the clinical significance of Tau phosphorylation status in Alzheimer's disease (AD), neurological disorders (NAD), and mild cognitive impairment (MCI). We found higher levels of different PKA-Tau phosphorylation sites (Ser214, Ser262, and Ser409) in AD than in NAD, MCI, and normal groups. Moreover, we used the CRISPR/Cas9 system to produce amyloid precursor protein (APPWT/D678H) isogenic mutants. These results demonstrated an enhanced level of phosphorylation by PKA but not by the control. This study is the first to demonstrate a transient increase in phosphor-Tau caused by PKA, but not GSK3ß, in the CSF and induced pluripotent stem cells (iPSCs) of AD, implying that both GSKIP and GSK3ß function as anchoring proteins to strengthen the cAMP/PKA/Tau axis signaling during AD pathogenesis.

19.
Life Sci ; 82(11-12): 561-9, 2008 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-18272184

RESUMEN

Osteoblasts and adipocytes share a common progenitor in bone marrow. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) plays a critical role in adipogenesis. Using a mouse pluripotent mesenchymal cell, D1, as a model, several reports have demonstrated that dexamethasone, a glucocorticoid, can induce adipogenesis. We first examined whether adipogenesis induction in D1 cells is initiated by activation of PPAR-gamma. The results revealed that pioglitazone induces adipogenesis in D1 cells in a dose-dependent manner and decreases alkaline phosphatase activity in D1 cells. Interestingly, this adipogenesis was not blocked by bisphenol A diglycidyl ether, a PPAR-gamma antagonist. A PPAR-gamma-mediated reporter gene assay showed no response to pioglitazone. We then asked whether dexamethasone-induced adipogenesis can be repressed by mifepristone (RU486), an antagonist of glucocorticoid receptor. The results disclosed that mifepristone cannot counteract dexamethasone-induced adipogenesis, and mifepristone itself induced adipogenesis in D1 cells. Moreover, glucocorticoid receptor-mediated reporter gene assay was not responsive to dexamethasone or mifepristone. We concluded that the adipogenesis induced by pioglitazone and dexamethasone in D1 cells may not occur via a PPAR-gamma and glucocorticoid receptor pathway. Finally, we analyzed the gene expression profile of D1 by cDNA microarray after treatment with dexamethasone. We found that the expression of several adipogenesis-related genes is highly provoked by this agent.


Asunto(s)
Adipogénesis/efectos de los fármacos , Células de la Médula Ósea/fisiología , Dexametasona/farmacología , Glucocorticoides/farmacología , Hipoglucemiantes/farmacología , PPAR gamma/metabolismo , Células del Estroma/fisiología , Tiazolidinedionas/farmacología , Adipogénesis/fisiología , Animales , Células de la Médula Ósea/citología , Línea Celular , Linaje de la Célula , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Antagonistas de Hormonas/metabolismo , Ratones , Ratones Endogámicos BALB C , Mifepristona/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Pioglitazona , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Receptores de Glucocorticoides/metabolismo , Transducción de Señal/fisiología , Células del Estroma/citología
20.
Cell Cycle ; 17(17): 2175-2186, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30198376

RESUMEN

We previously demonstrated that Bim is the main BH3-only protein replacing Bak/Bax from Bcl-xl to activate apoptosis in a p53-independent manner in response to doxorubicin in prostate cancer. However, the comparison of doxorubicin treatment between LNCaP cells carrying p53-wild type and PC3 cells carrying p53-null suggested that p53 might be essential for maximizing apoptosis. Inhibition of ATM did not affect doxorubicin-induced apoptosis. Overexpression of p53 did not affect ABT-263-induced apoptosis and nevertheless, the combination of doxorubicin with ABT-263 induced higher apoptotic responses than did doxorubicin or ABT-263 alone. These results advocated that doxorubicin-induced DNA damage controls p53 function for intensifying apoptosis. Indeed, overexpression of p53 only enhanced apoptosis under conditions of severe DNA damage induced by high concentrations of doxorubicin in LNCaP cells. Immunofluorescence staining showed vague γH2AX foci and enlarged nuclei in LNCaP cells in response to high concentrations of doxorubicin, en route to apoptosis. In addition, our results revealed that the apoptosis in response to DNA replication stress induced by CFS-1686, a catalytic inhibitor of topoisomerase, is p53-independent. Interestingly, the combination of doxorubicin with CFS-1686 generated DNA damage and replication stress simultaneously, resulting in a synergistic apoptotic effect in prostate cancer cells. Thus, we concluded that p53 is a sensor for enhanced apoptosis in response to DNA damage stress, not DNA replication stress, at least in prostate cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Daño del ADN , Doxorrubicina/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA