Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; : 119597, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002631

RESUMEN

Phenanthrene (Phe) is a commonly occurring polycyclic aromatic hydrocarbon (PAH) found in various food sources and drinking water. Previous studies have shown that long-term exposure to Phe in male mice leads to insulin resistance in a dose-dependent manner. However, the effect of Phe on glucose homeostasis in female mice remains unknown. To address this knowledge gap, female Kunming mice were exposed to Phe through their drinking water at concentrations of 0.05, 0.5, and 5 ng/mL. After 270 d of exposure, we surprisingly discovered a low-dose effect of Phe on insulin resistance in female mice, which differed from the effect observed in male mice and showed sexual dimorphism. Specifically, insulin resistance was only observed in the 0.05 ng/mL treatment, and this low-dose effect was also reflected in the concentration of Phe in white adipose tissue (WAT). Differences in metabolic enzyme activities in the liver may potentially explain this effect. The observed sexual dimorphism in Phe exposure could be attributed to variations in estrogen (E2) level and estrogen receptor beta (ERß) expression in WAT. These findings highlight the association between environmental factors and the development of insulin resistance, emphasizing the pathogenic effect of even low doses of Phe. Moreover, sex dependent-effect should be given more attention when studying the toxic effects of environmental pollutants.

2.
Ecotoxicol Environ Saf ; 239: 113695, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35623150

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) have been detected throughout the human body. Whether exposure to PAHs is associated with the incidence of type 1 diabetes mellitus should be investigated. To this end, pregnant mice were exposed to mixed PAHs (5, 50, or 500 µg/kg) once every other day during gestation. The adult male offspring displayed impaired glucose tolerance and reduced serum levels of glucagon and insulin. Immunohistochemical staining revealed increased numbers of apoptotic ß-cells and a reduced ß-cell mass in these males. The downregulated expression of pancreatic estrogen receptor α, androgen receptor, and transcription factor PDX1 was responsible for impacting ß-cell development. The relatively reduced α-cell area was associated with downregulated ARX expression. The transcription of Isn2 and Gcg in pancreatic tissue was downregulated, which indicated that the function of ß-cells and α-cells was impaired. Methylation levels in the Isn2 promotor were significantly elevated in mice prenatally exposed to 500 µg/kg PAHs, which was consistent with the change in its mRNA levels. The number of macrophages infiltrating islets was significantly increased, indicating that prenatal PAH exposure might reduce islet cell numbers in an autoimmune manner. This study shows that prenatal exposure to PAHs may promote the pathogenesis of type 1 diabetes mellitus.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Glucagón , Islotes Pancreáticos , Hidrocarburos Policíclicos Aromáticos , Efectos Tardíos de la Exposición Prenatal , Animales , Diabetes Mellitus Tipo 1/inducido químicamente , Femenino , Glucagón , Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Glucagón/patología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/patología , Masculino , Ratones , Hidrocarburos Policíclicos Aromáticos/efectos adversos , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología
3.
Bull Environ Contam Toxicol ; 110(1): 8, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36512078

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are pervasive pollutants in the environment. To compare the developmental toxicity of PAHs with different ring numbers to fish embryos, benzo(a)pyrene (BaP), pyrene (Pyr) and phenanthrene (Phe) were selected as the representatives of 3, 4 and 5-ringed PAHs, and fertilized embryos of zebrafish (Danio rerio) were exposed to 5 nM PAHs for 72 h. The PAH-treated embryos showed defects in craniofacial cartilage. The order of toxicity to the development of craniofacial cartilage was Phe > Pyr > BaP. The transcription of genes related to the development of craniofacial cartilage was downregulated. The GC-MS/MS detection showed that bioaccumulation of BaP in the exposed embryos was two orders of magnitude lower than that of Phe and Pyr. It is suggested that the more uptake and accumulation of Phe and Pyr could be one of the reasons for their greater toxicity to development in early stage embryos.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Animales , Hidrocarburos Policíclicos Aromáticos/toxicidad , Pez Cebra , Espectrometría de Masas en Tándem , Benzo(a)pireno/toxicidad
4.
Ecotoxicol Environ Saf ; 225: 112804, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34555720

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are a risk factor for the occurrence of cardiac diseases. The present study was conducted to investigate the influence of prenatal exposure to a mixed PAHs on heart and the underlying mechanism. Pregnant mice were orally administered with a mixture of 8 kinds of PAHs (0, 5, 50, 500 µg/kg body weight) once every 2 days for a total of 8 dosages. The mixed PAHs contained naphthalene, acenaphthylene, phenanthrene, fluoranthene, pyrene, benzo[a]pyrene, dibenzo[a,h]anthracene and benzo[g,h,i]perylene at a weight ratio of 10: 10: 10: 10: 10: 1: 1: 1. The adult males, not females, showed significantly decreased heart/body weight ratio, which was attributed to the loss of cardiac fiber and the increase of cell apoptosis. The protein expression of transforming growth factor ß1 and its downstream transcription factors, Smad3 and Smad4, was significantly downregulated, which caused the loss of cardiac fiber. The downregulated phosphatidylinositol 3-kinase and AKT led to increased expression of caspase3, caspase9, BAX and reduced expression of Bcl-2, which was responsible for the increased cell apoptosis. Different levels of aromatic hydrocarbon receptor and sex hormone receptors between males and females were associated with the distinct effect on heart.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Animales , Femenino , Masculino , Ratones , Hidrocarburos Policíclicos Aromáticos/toxicidad , Embarazo , Factores de Riesgo
5.
Ecotoxicol Environ Saf ; 228: 112967, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34773848

RESUMEN

Fenbuconazole (FBZ) is widely used in agriculture. The current study was conducted to evaluate the influence of embryonic exposure to FBZ on reproduction in adult zebrafish. Embryos were exposed to 5, 50 and 500 ng/L FBZ for 72 h and then raised in clean water until adulthood. The result showed that the percentage of mature gametes was significantly reduced in adult zebrafish. The fertilization rate and survival rate of F1 embryos were decreased when the exposed fish were mated with untreated fish. The transcription of brain gnrh3, fshß and lhγ in adult fish was upregulated, while the levels of 17ß-estradiol and testosterone were not significantly changed in all treated groups, indicating that the reproduction-related genes in brain was not responsible for the reduced reproductive ability. The downregulated transcription of fshr, lhr, ar and esr2 in the gonads indicated the dysfunction of Sertoli and Leydig cells. Notably, downregulated transcription and upregulated methylation levels of genes related to germ cells were observed in treated F0 larvae and adult gonads. The elevated methylation levels of piwil1 and dnmt6 in the testes and vasa and dazl in the ovary were matched with the alterations in the expression of these genes, suggesting that germ cells are the main targets of FBZ. These results provide new mechanism underlying reproductive toxicity in fish caused by chemicals, and give potential retroactive biomarkers for monitoring reproductive toxic pollutants.

6.
Environ Toxicol ; 36(4): 665-674, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33258555

RESUMEN

Numerous studies have shown that endocrine-disrupting chemicals are one of the important pathogenic factors in women with polycystic ovary syndrome. Our previous study has revealed that bisphenol A (BPA) can cause steroid hormone imbalance, polycystic ovary, and estrus cycle disorder. In this study, we aimed to explore the effect of BPA, a typical environmental estrogen, on the synthesis of steroid hormones in human ovarian granulosa KGN cells. Exposure of KGN cells to BPA (0.5, 5, 50, and 500 µg/L) resulted in the decrease of progesterone (P), estradiol (E2), and the ratio of estradiol to testosterone (E2/T). BPA affected the expression of genes related to steroid hormone synthesis in KGN cells, including the decreased expression of the steroidogenic acute regulatory protein, ferredoxin, and ferredoxin reductase genes during progesterone synthesis; upregulating the expression of cytochrome p450 oxidoreductase gene associated with E2 and T synthesis; and the downregulated cytochrome P450 family 1 subfamily A member 1 and cytochrome P450 family 1 subfamily B member 1 in E2 degradation. BPA also reduced the expression of stimulatory G proteins (GS) in follicle-stimulating hormone receptor (FSHR)/GS/adenylate cyclase (AC) signaling pathway. In summary, our research has demonstrated that environment-relevant level of BPA exposure leads to steroid hormone synthesis disorder in human ovarian granulosa cells, which might cause the reduction of gene expression in hormone synthesis and the suppression of the FSHR/GS/AC signaling pathway.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Estradiol/biosíntesis , Células de la Granulosa/efectos de los fármacos , Fenoles/toxicidad , Progesterona/biosíntesis , Testosterona/biosíntesis , Animales , Técnicas de Cultivo de Célula , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Femenino , Expresión Génica/efectos de los fármacos , Humanos , Regulación hacia Arriba
7.
Small ; 16(22): e2001371, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32338439

RESUMEN

Quantum dots (QDs) have numerous potential applications in lighting, engineering, and biomedicine. QDs are mainly excreted through the kidney due to their ultrasmall sizes; thus, the kidneys are target organs of QD toxicity. Here, an organoid screening platform is established and used to study the nephrotoxicity of QDs. Organoids are templated from monodisperse microfluidic Matrigel droplets and found to be homogeneous in both tissue structure and functional recapitulation within a population and suitable for the quantitative screening of toxic doses. Kidney organoids are proved displaying higher sensitivity than 2D-cultured cell lines. Similar to metal-containing QDs, black phosphorus (BP)-QDs are found to have moderate toxicity in the kidney organoids. The nephrotoxicity of BP-QDs are validated in both mice and human renal tubular epithelial cells. BP-QDs are also found to cause insulin insensitivity and endoplasmic reticulum (ER) stress in the kidney. Furthermore, ER stress-related IRE1α signaling is shown to mediate renal toxicity and insulin insensitivity caused by BP-QDs. In summary, this work demonstrates the use of constructed kidney organoids as 3D high-throughput screening tools to assess nanosafety and further illuminates the effects and molecular mechanisms of BP-QD nephrotoxicity. The findings will hopefully enable improvement of the safety of BP-QD applications.


Asunto(s)
Puntos Cuánticos , Animales , Endorribonucleasas , Humanos , Ratones , Organoides , Fósforo , Proteínas Serina-Treonina Quinasas , Puntos Cuánticos/toxicidad
8.
Environ Sci Technol ; 54(23): 15225-15234, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33171048

RESUMEN

Epidemiological evidence shows that the body burden of polycyclic aromatic hydrocarbons (PAHs) is related to the disruption of glucose homeostasis. However, the contribution of PAHs to the development of diabetes remains poorly documented. In the current work, male Kunming mice received phenanthrene (Phe) (5, 50, and 500 ng/kg) by gavage administration once every 2 days for 28 weeks. The significant elevation of homeostasis model assessment-insulin resistance (HOMA-IR) and HOMA-ß cell, accompanied by hyperinsulinemia, indicated the occurrence of insulin resistance. The suppression of the insulin receptor signaling pathway in skeletal muscle might be responsible for glucose intolerance. Under the nonobese state, the serum levels of resistin, tumor necrosis factor-α, and interleukin-6 were elevated, whereas the levels of adiponectin were reduced. These changes in adipocytokine levels were consistent with their transcription in white adipose tissue. The promoter methylation levels of Retn (encoding resistin) and Adipoq (encoding adiponectin) were inversely correlated with their mRNA levels, indicating that Phe exposure could cause the disruption of adipocytokine secretion via epigenetic modification. The results would be helpful for understanding the pathogenesis in the development of T2DM caused by nonobesogenic pollutants.


Asunto(s)
Intolerancia a la Glucosa , Resistencia a la Insulina , Fenantrenos , Adiponectina , Animales , Glucemia , Insulina , Masculino , Ratones , Fenantrenos/toxicidad
9.
Ecotoxicol Environ Saf ; 188: 109875, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31706244

RESUMEN

Previous works showed that chronic exposure to Aroclor 1254 disrupted glucose homeostasis and induced insulin resistance in male mice. To further observe the different effects of Aroclor 1254 exposure on the pancreatic α-cells and ß-cells, male mice were exposed to Aroclor 1254 (0, 0.5, 5, 50, 500 µg/kg) for 60 days, the pancreas was performed a histological examination. The results showed that the percentage of apoptosis cell (indicated by TUNEL assay) was increased in both α-cells and ß-cells, as the Aroclor 1254 dose was increased; the proliferation (indicated by PCNA expression) rate of ß-cells was elevated while that of α-cells was not affected, resulting in an increased ß-cell mass and a decreased α-cell mass in a dose-depend manner. The number of Pdx-1 positive ß-cells was significantly increased whereas that of Arx positive α-cells was markedly decreased, indicating an enhanced ß-cell neogenesis and a weakened α-cell neogenesis. The drastically reduction of serum testosterone levels in all the treatments suggested an anti-androgenic potency of Aroclor 1254. The up-regulation of estrogen receptors (ERα and ERß) and androgen receptor in ß-cells might be responsible for the increased ß-cell mass and neogenesis.


Asunto(s)
Antitiroideos/toxicidad , Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Glucagón/patología , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Masculino , Ratones , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/metabolismo , Testosterona/sangre , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
10.
J Environ Sci (China) ; 85: 1-8, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31471016

RESUMEN

Metalaxyl is an anilide pesticide that is widely used to control plant diseases caused by Peronosporales species. In order to study the toxic effects, zebrafish embryos were exposed to metalaxyl at nominal concentrations of 5, 50 and 500 ng/L for 72 hr, and the cardiac development and functioning of larvae were observed. The results showed that metalaxyl exposure resulted in increased rates of pericardial edema, heart hemorrhage and cardiac malformation. The distance between the sinus venosus and bulbus arteriosus, stroke volume, cardiac output and heart rate were significantly increased in larvae exposed to 50 and 500 ng/L metalaxyl compared to solvent control larvae. Significant upregulation in the transcription of tbx5, gata4 and myh6 was observed in the 50 and 500 ng/L treatments, and that of nkx2.5 and myl7 was observed in the 5, 50 and 500 ng/L groups. These disturbances may be related to cardiac developmental and functional defects in the larvae. The activity of Na+/K+-ATPase and Ca2+-ATPase was significantly increased in zebrafish embryos exposed to 500 ng/L metalaxyl, and the mRNA levels of genes related to ATPase (atp2a11, atp1b2b, and atp1a3b) (in the 50 and 500 ng/L groups) and calcium channels (cacna1ab) (in the 500 ng/L group) were significantly downregulated; these changes might be associated with heart arrhythmia and functional failure.


Asunto(s)
Alanina/análogos & derivados , Corazón/crecimiento & desarrollo , Contaminantes Químicos del Agua/toxicidad , Alanina/toxicidad , Animales , Embrión no Mamífero , Corazón/efectos de los fármacos , Pez Cebra/embriología
11.
Ecotoxicol Environ Saf ; 158: 293-299, 2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-29715634

RESUMEN

Fenbuconazole (FBZ), a triazole-containing fungicide, is widely used in agriculture and horticulture. In the present study, the development and cardiac functioning were observed and determined in zebrafish embryos exposed to FBZ at 5, 50 and 500 ng/L nominal concentrations for 72 h. The results showed that 500 ng/L FBZ significantly increased pericardial edema rate, spine curvature rate, disturbed cardiac function, and led a shortened lower jaw. The transcription of genes such as tbx5, nkx2.5, tnnt2, gata4, bmp2b, myl7 was altered, which might be responsible for the cardiac developmental and functioning defects in the larvae. The deformation in bone development might be related with the impaired transcription levels of shh and bmp2b. The transcription of cyp26a1 (encoding retinoic acid metabolism enzyme) was significantly up-regulated in the 500 ng/L group, which might be a reason causing the teratogenic effect of FBZ. These results suggest that FBZ could have toxic effects on embryonic development, which should be considered in the risk evaluation of FBZ application.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Nitrilos/toxicidad , Triazoles/toxicidad , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Relación Dosis-Respuesta a Droga , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Femenino , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Corazón/efectos de los fármacos , Corazón/embriología , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Larva/efectos de los fármacos , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/embriología , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Troponina T/genética , Troponina T/metabolismo , Regulación hacia Arriba , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
12.
J Environ Sci (China) ; 63: 126-132, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29406096

RESUMEN

Difenoconazole (DFZ) is a triazole fungicide which has been detected in the aquatic environment, including estuaries and embayments. However, few studies addressing the reproductive toxicity and transgenerational effects of DFZ on marine fishes are available. The present study was conducted to investigate the effects of DFZ on male marine medaka (Oryzias melastigma). After exposure of the embryo to 1, 10, 100 and 1000ng/L DFZ for 180days, the gonadosomatic index was significantly decreased in the 1000ng/L treatment. The number of sperm was reduced while the abundances of spermatocytes and spermatogonia in the testes were increased in all the treatments. The mRNA levels of salmon-type gnrh (sgnrh), the luteinizing hormone (lhß) and the follicle-stimulating hormone (fshß) genes in the brain all exhibited a significant down-regulation, the expression of androgen receptors (arα and arß) was decreased and that of estrogen receptor ß and cytochrome P450 aromatase (cyp19B) was increased in the testes. The expression levels of cyp19A and cyp19B were increased in the liver. The decrease of ars mRNA levels might be one of the reasons causing the reduction of sperm. The down-regulation of sgnrh, lhß and fshß mRNA levels suggested that DFZ might impact the spermatogenesis via the brain-pituitary-gonad pathway. The decrease of the fertilization success, the hatch ability and the swim-up success in the F1 generation indicated that DFZ pollution at environmental levels might cause a decrease of wild fish populations.


Asunto(s)
Dioxolanos/toxicidad , Fungicidas Industriales/toxicidad , Oryzias/fisiología , Triazoles/toxicidad , Animales , Aromatasa/metabolismo , Masculino , Receptores Androgénicos , Reproducción/efectos de los fármacos , Testículo , Contaminantes Químicos del Agua/toxicidad
13.
Arch Toxicol ; 91(10): 3261-3269, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28397090

RESUMEN

Organotin compounds such as tributyltin (TBT) and triphenyltin can induce diabetes and insulin resistance. However, the development of diabetes caused by organotins and its underlying mechanisms remain unclear. In the present study, male KM mice were orally administered with TBT (0.5, 5, and 50 µg/kg) once every 3 days for 45 days. Their body weights increased and reached a significant difference compared to the control, and the fasting blood glucose levels were significantly elevated. The fasting levels of serum insulin and adiponectin increased, while glucagon levels decreased in the animals treated with TBT. The expression of the insulin receptor (IR) signaling cascade, including IR, IR substrate, phosphatidylinositol 3-kinase, Akt, and glucose transporter 4, was inhibited both in the skeletal muscle and the liver, which might be a main reason for the hyperglycemia and hyperinsulinemia. After removing the TBT stress for 60 days, the animals which had received exposure to TBT could recover normoglycemia, accompanied with a recovery of the suppressed IR signal pathway and fasting insulin levels. However, the fasting levels of serum adiponectin and glucagon were lower than that of the control mice, which would remain a potential risk inducing the disruption of glucose homeostasis.


Asunto(s)
Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Compuestos de Trialquiltina/toxicidad , Administración Oral , Animales , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Glucagón/sangre , Hormonas/sangre , Insulina/metabolismo , Resistencia a la Insulina , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Transducción de Señal/efectos de los fármacos , Compuestos de Trialquiltina/administración & dosificación
14.
Ecotoxicology ; 26(6): 772-781, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28432496

RESUMEN

Difenoconazole (DFZ) is a widely used triazole fungicide which has been detected in some estuaries and embayments. This study was conducted to investigate the effects of DFZ on ovarian development in female marine medaka (Oryzias melastigma). After 180 days exposure of the embryo to DFZ (0, 1, 10, 100 and 1000 ng/L), the gonadosomatic index and percentage of mature oocytes produced were significantly reduced in the 1, 10 and 100 ng/L treatments but not the 1000 ng/L treatment compared to the control, thus exhibiting a U-shaped dose response curve. The relative mRNA levels of brain follicle-stimulating hormone, ovarian cytochrome P450 aromatase (CYP19s), hepatic estrogen receptors and vitellogenin, and the ratio of 17ß-estradiol to testosterone in the muscle, also showed a U-shaped dose response, which was consistent with the development of oocytes. In addition, glutathione S-transferase activity in the ovary showed a U-shaped dose-response. These results gave an explanation for this U-shaped dose-response. The egg number produced, the hatch ability and the swim-up success in the F1 generation all showed a U-shaped dose response, indicating that exposure to DFZ at low concentrations can cause a decrease of fecundity and viability of the next generation. Thus, a more extensive evaluation of the impact of DFZ on marine fish reproduction at realistic environmental concentrations is needed.


Asunto(s)
Dioxolanos/toxicidad , Fungicidas Industriales/toxicidad , Oryzias/fisiología , Triazoles/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Estradiol/metabolismo , Femenino , Glutatión Transferasa/metabolismo , Estadios del Ciclo de Vida , Oryzias/crecimiento & desarrollo , Ovario/efectos de los fármacos , Vitelogeninas/metabolismo
15.
J Environ Sci (China) ; 52: 98-104, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28254063

RESUMEN

This study was conducted to assess the effects of difenoconazole (DFZ), a triazole fungicide, on the hepatic biotransformation system and its bioaccumulation in marine medaka (Oryzias melastigma). Fish were exposed to DFZ (1, 10, 100, 1000ng/L) for 180days. The results showed that: (1) The mRNA levels of hepatic CYP1A1, CYP1B, CYP1C1, CYP27B and CYP3A40 were up-regulated, but those of CYP3A38 and CYP27A1 were down-regulated. (2) The activity of ethoxyresorufin-O-deethylase (EROD) and the content of reduced glutathione (GSH) in the liver were increased in the DFZ-treated groups, and glutathione S-transferase (GST) activity was increased in the 100 and 1000ng/L groups. (3) DFZ was accumulated in the muscle and the biological concentration factors in the 10, 100, and 1000ng/L groups were respectively 149, 81 and 25. These results suggested that long-term exposure to DFZ at low concentrations would result in a bioaccumulation of this compound and disturb the biotransformation system.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Dioxolanos/toxicidad , Fungicidas Industriales/toxicidad , Oryzias/fisiología , Triazoles/toxicidad , Animales , Biotransformación , Sistema Enzimático del Citocromo P-450/metabolismo , Dioxolanos/metabolismo , Fungicidas Industriales/metabolismo , Glutatión Transferasa/metabolismo , Hígado/metabolismo , Oxidación-Reducción , Triazoles/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad
16.
Ecotoxicol Environ Saf ; 134P1: 23-30, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27573365

RESUMEN

Autism spectrum disorder (ASD) is a serious debilitating mental illness with complex symptoms and multi-factorial pathogenesis. Although the pathogenesis of ASD remains unclear, etiology is thought to involve complex, multigenic interactions and possible environmental contributions. In the present study, we used zebrafish (Danio rerio) as a model to investigate whether maternal exposure to the water soluble fraction of crude oil (WSF, 5µg/L), lead (Pb, 20µg/L) and their mixture (5 µg/L WSF+20 µg/L Pb) could induce autism-like behavior in larvae. Our results showed that isolated and combined WSF/Pb exposure altered the behavioral pattern of fish swimming. WSF significantly increased anxiety and locomotor activity, decreased repetitive behavior in the open field test, and reduced the level of serotonin. However, co-exposure to WSF/Pb decreased behavioral activity and shoaling behavior, and increased cycle swimming and edge preference. Significant changes in the expression level of the multiple genes potentially critical for regulating environmental factor induced autism-like behavior were found. A gene network regulating ASD disturbed by WSF/Pb exposure was established using computational analysis. The information from the network could provide a clue for further mechanistic studies explaining molecular events regulating WSF/Pb mediated ASD.

17.
Ecotoxicology ; 25(5): 982-90, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27112457

RESUMEN

Difenoconazole (DFZ) is a triazole fungicide that inhibits the biosynthesis of sterols in cell membranes and is widely used in agriculture for effectively treating fungal infections. However, there are few studies available addressing the effects of DFZ on lipid metabolism in marine fishes. The present study was conducted to investigate the effects of DFZ on lipid metabolism in marine medaka (Oryzias melastigma). After exposure to 1, 10, 100 and 1000 ng/L DFZ for 180 days, an increase in condition factor (CF), total lipids and polyunsaturated fatty acids (PUFA) contents accompanied with a decrease in saturated fatty acids was observed in the muscle of DFZ-exposed fish. The expression of peroxisome proliferator-activated receptor γ as well as retinoid X receptors in the muscle was up-regulated, which would be responsible for the lipid accumulation in the muscle. The elevation of Δ6-desaturase (FADS2) and Δ9-desaturase (SCD) mRNA levels in the muscle and liver might result in the increase of PUFA content. The increased CF index and total lipid amounts indicated that DFZ exposure could affect the health of fish. ∑SFA (sum of saturated fatty acids) and DHA (docosahexaenoic acid; 22:6n-3) concentrations decreased, and the levels of ∑PUFA and ∑n-6PUFA increased in the muscle, which suggested that DFZ exposure could change lipid metabolism and profiles in fish.


Asunto(s)
Dioxolanos/toxicidad , Fungicidas Industriales/toxicidad , Metabolismo de los Lípidos/efectos de los fármacos , Oryzias/fisiología , Triazoles/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Receptores X Retinoide/metabolismo , Pruebas de Toxicidad
18.
Environ Toxicol ; 31(6): 671-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25409620

RESUMEN

Polychlorinated biphenyls (PCBs) are a class of organic pollutants that have been linked to pancreatic disease. However, their role in affecting the exocrine function of pancreas and the underlying mechanism remains elusive. In the present study, male C57 mice were treated with Aroclor 1254, a commercially available PCBs mixture, at a dosage of 0.5, 5, 50, or 500 µg kg(-1) every 3 days by oral gavage. Decrease in pancreas/soma index and acinar atrophy were observed in the mice after exposure for 50 days. Aroclor 1254 exposure significantly decreased the PCNA-positive cells in the pancreatic acini in a dose-dependent manner. In addition, western blot analysis showed that PCNA expression was decreased in pancreas in the presence of Aroclor 1254, which suggests that Aroclor 1254 suppresses cell proliferation. TUNEL-positive apoptotic cells as well as the expression of Bcl2, BclXL, BAX, and Bad of exocrine pancreas did not show significant changes in the treated mice, indicating that Aroclor 1254 has no effect on apoptosis. We also found that phosphorylation of ERK1/2, P90RSK1 and Bad was increased in the treated groups; this compensatory activation of phosphorylation in ERK1/2-P90RSK1-Bad signaling cascade could protect cell from apoptosis to maintain the cell numbers and function of exocrine pancreas. Moreover, we found that the expression of Kras and TNFα was increased in the pancreas, indicating that Aroclor 1254 exposure could result in increased risk of inflammation and carcinoma. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 671-678, 2016.


Asunto(s)
/toxicidad , Contaminantes Ambientales/toxicidad , Páncreas Exocrino/efectos de los fármacos , Páncreas Exocrino/patología , Animales , Atrofia , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos C57BL
19.
Environ Sci Technol ; 49(16): 10084-92, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26190026

RESUMEN

Epidemiological studies demonstrate that polychlorinated biphenyls (PCBs) induce diabetes and insulin resistance. However, the development of diabetes caused by PCBs and its underlying mechanisms are still unclear. In the present study, male C57BL/6 mice were orally administered with Aroclor 1254 (0.5, 5, 50, and 500 µg/kg) once every 3 days for 60 days. The body weight and the fasting blood glucose levels were significantly elevated; the levels of serum insulin, resistin, tumor necrosis factor α (TNFα), and interleukin-6 (IL-6) increased, while glucagon levels decreased in the animals treated with Aroclor 1254. Pancreatic ß-cell mass significantly increased, while α-cell mass was reduced. Aroclor 1254 inhibited the expression of the insulin receptor signaling cascade, including insulin receptor, insulin receptor substrate, phosphatidylinositol 3-kinase-Akt, and protein kinase B and glucose transporter 4, both in the skeletal muscle and the liver. The results suggested that chronic exposure to Aroclor 1254 disrupted glucose homeostasis and induced hyperinsulinemia. The significant elevation of serum resistin, TNFα and IL-6 indicated that obesity caused by Aroclor 1254 is associated with insulin resistance. The elevation of blood glucose levels could have been mainly as a result of insulin receptor signals pathway suppression in skeletal muscle and liver, and a decrease in pancreatic α-cells, accompanied by a reduction of serum glucagon levels, may play an important role in the development of type 2 diabetes.


Asunto(s)
/toxicidad , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Receptor de Insulina/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Regulación hacia Abajo/efectos de los fármacos , Intolerancia a la Glucosa/complicaciones , Hiperglucemia/complicaciones , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Bifenilos Policlorados/metabolismo , Aumento de Peso/efectos de los fármacos
20.
IEEE Netw ; 29(5): 6-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26504265

RESUMEN

Big data create values for business and research, but pose significant challenges in terms of networking, storage, management, analytics and ethics. Multidisciplinary collaborations from engineers, computer scientists, statisticians and social scientists are needed to tackle, discover and understand big data. This survey presents an overview of big data initiatives, technologies and research in industries and academia, and discusses challenges and potential solutions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA